scholarly journals Characterization of External Mucosal Microbiomes of Nile Tilapia and Grey Mullet Co-cultured in Semi-Intensive Pond Systems

2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmed Elsheshtawy ◽  
Benjamin Gregory James Clokie ◽  
Amaya Albalat ◽  
Allan Beveridge ◽  
Ahmad Hamza ◽  
...  

The external mucosal surfaces of the fish harbor complex microbial communities, which may play pivotal roles in the physiological, metabolic, and immunological status of the host. Currently, little is known about the composition and role of these communities, whether they are species and/or tissue specific and whether they reflect their surrounding environment. Co-culture of fish, a common practice in semi-intensive aquaculture, where different fish species cohabit in the same contained environment, is an easily accessible and informative model toward understanding such interactions. This study provides the first in-depth characterization of gill and skin microbiomes in co-cultured Nile tilapia (Oreochromis niloticus) and grey mullet (Mugil capito) in semi-intensive pond systems in Egypt using 16S rRNA gene-based amplicon sequencing. Results showed that the microbiome composition of the external surfaces of both species and pond water was dominated by the following bacterial phyla: Proteobacteria, Fusobacteriota, Firmicutes, Planctomycetota, Verrucomicrobiota, Bacteroidota, and Actinobacteriota. However, water microbial communities had the highest abundance and richness and significantly diverged from the external microbiome of both species; thus, the external autochthonous communities are not a passive reflection of their allochthonous communities. The autochthonous bacterial communities of the skin were distinct from those of the gill in both species, indicating that the external microbiome is likely organ specific. However, gill autochthonous communities were clearly species specific, whereas skin communities showed higher commonalities between both species. Core microbiome analysis identified the presence of shared core taxa between both species and pond water in addition to organ-specific taxa within and between the core community of each species. These core taxa included possibly beneficial genera such as Uncultured Pirellulaceae, Exiguobacterium, and Cetobacterium and opportunistic potential pathogens such as Aeromonas, Plesiomonas, and Vibrio. This study provides the first in-depth mapping of bacterial communities in this semi-intensive system that in turn provides a foundation for further studies toward enhancing the health and welfare of these cultured fish and ensuring sustainability.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yousri Abdelhafiz ◽  
Jorge M. O. Fernandes ◽  
Simone Larger ◽  
Davide Albanese ◽  
Claudio Donati ◽  
...  

In industrial animal production, breeding strategies are essential to produce offspring of better quality and vitality. It is also known that host microbiome has a bearing on its health. Here, we report for the first time the influence of crossbreeding strategy, inbreeding or outbreeding, on the buccal and intestinal bacterial communities in female Nile tilapia (Oreochromis niloticus). Crossbreeding was performed within a family and between different fish families to obtain the inbred and outbred study groups, respectively. The genetic relationship and structure analysis revealed significant genetic differentiation between the inbred and outbred groups. We also employed a 16S rRNA gene sequencing technique to understand the significant differences between the diversities of the bacterial communities of the inbred and outbred groups. The core microbiota composition in the mouth and the intestine was not affected by the crossbreeding strategy but their abundance varied between the two groups. Furthermore, opportunistic bacteria were abundant in the buccal cavity and intestine of the outbred group, whereas beneficial bacteria were abundant in the intestine of the inbred group. The present study indicates that crossbreeding can influence the abundance of beneficial bacteria, core microbiome and the inter-individual variation in the microbiome.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240916
Author(s):  
Luisa M. Arias-Giraldo ◽  
Marina Muñoz ◽  
Carolina Hernández ◽  
Giovanny Herrera ◽  
Natalia Velásquez-Ortiz ◽  
...  

Triatomines (Hemiptera: Reduviidae) are the insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. The gut bacterial communities affect the development of T. cruzi inside the vector, making the characterization of its composition important in the understanding of infection development. We collected 54 triatomine bugs corresponding to four genera in different departments of Colombia. DNA extraction and PCR were performed to evaluate T. cruzi presence and to determine the discrete typing unit (DTU) of the parasite. PCR products of the bacterial 16S rRNA gene were pooled and sequenced. Resulting reads were denoised and QIIME 2 was used for the identification of amplicon sequence variants (ASVs). Diversity (alpha and beta diversity) and richness analyses, Circos plots, and principal component analysis (PCA) were also performed. The overall T. cruzi infection frequency was 75.9%, with TcI being the predominant DTU. Approximately 500,000 sequences were analyzed and 27 bacterial phyla were identified. The most abundant phyla were Proteobacteria (33.9%), Actinobacteria (32.4%), Firmicutes (19.6%), and Bacteroidetes (7.6%), which together accounted for over 90% of the gut communities identified in this study. Genera were identified for these main bacterial phyla, revealing the presence of important bacteria such as Rhodococcus, Serratia, and Wolbachia. The composition of bacterial phyla in the gut of the insects was significantly different between triatomine species, whereas no significant difference was seen between the state of T. cruzi infection. We suggest further investigation with the evaluation of additional variables and a larger sample size. To our knowledge, this study is the first characterization of the gut bacterial structure of the main triatomine genera in Colombia.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


2018 ◽  
Vol 17 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Subba Rao Chaganti ◽  
Daniel Heath

Abstract The characterization of microbial community dynamics using genomic methods is rapidly expanding, impacting many fields including medical, ecological, and environmental research and applications. One of the biggest challenges for such studies is the isolation of environmental DNA (eDNA) from a variety of samples, diverse microbes, and widely variable community compositions. The current study developed environmentally friendly, user safe, economical, and high throughput eDNA extraction methods for mixed aquatic microbial communities and tested them using 16 s rRNA gene meta-barcoding. Five different lysis buffers including (1) cetyltrimethylammonium bromide (CTAB), (2) digestion buffer (DB), (3) guanidinium isothiocyanate (GITC), (4) sucrose lysis (SL), and (5) SL-CTAB, coupled with four different purification methods: (1) phenol-chloroform-isoamyl alcohol (PCI), (2) magnetic Bead-Robotic, (3) magnetic Bead-Manual, and (4) membrane-filtration were tested for their efficacy in extracting eDNA from recreational freshwater samples. Results indicated that the CTAB-PCI and SL-Bead-Robotic methods yielded the highest genomic eDNA concentrations and succeeded in detecting the core microbial community including the rare microbes. However, our study recommends the SL-Bead-Robotic eDNA extraction protocol because this method is safe, environmentally friendly, rapid, high-throughput and inexpensive.


2008 ◽  
Vol 46 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Young-Do Nam ◽  
Youlboong Sung ◽  
Ho-Won Chang ◽  
Seong Woon Roh ◽  
Kyoung-Ho Kim ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rafael J. Vivero ◽  
Marcela Villegas-Plazas ◽  
Gloria E. Cadavid-Restrepo ◽  
Claudia Ximena Moreno Herrera ◽  
Sandra I. Uribe ◽  
...  

AbstractPhlebotomine sand flies are remarkable vectors of several etiologic agents (virus, bacterial, trypanosomatid Leishmania), posing a heavy health burden for human populations mainly located at developing countries. Their intestinal microbiota is involved in a wide range of biological and physiological processes, and could exclude or facilitate such transmission of pathogens. In this study, we investigated the Eubacterial microbiome from digestive tracts of Lu. evansi adults structure using 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq) obtained from digestive tracts of Lu. evansi adults. The samples were collected at two locations with high incidence of the disease in humans: peri-urban and forest ecosystems from the department of Sucre, Colombia. 289,068 quality-filtered reads of V4 region of 16S rRNA gene were obtained and clustered into 1,762 operational taxonomic units (OTUs) with 97% similarity. Regarding eubacterial diversity, 14 bacterial phyla and 2 new candidate phyla were found to be consistently associated with the gut microbiome content. Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla in all the samples and the core microbiome was particularly dominated by Methylobacterium genus. Methylobacterium species, are known to have mutualistic relationships with some plants and are involved in shaping the microbial community in the phyllosphere. As a remarkable feature, OTUs classified as Wolbachia spp. were found abundant on peri-urban ecosystem samples, in adult male (OTUs n = 776) and unfed female (OTUs n = 324). Furthermore, our results provide evidence of OTUs classified as Cardinium endosymbiont in relative abundance, notably higher with respect to Wolbachia. The variation in insect gut microbiota may be determined by the environment as also for the type of feeding. Our findings increase the richness of the microbiota associated with Lu. evansi. In this study, OTUs of Methylobacterium found in Lu. evansi was higher in engorged females, suggesting that there are interactions between microbes from plant sources, blood nutrients and the parasites they transmit during the blood intake.


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Jonah E. Einson ◽  
Asha Rani ◽  
Xiaomeng You ◽  
Allison A. Rodriguez ◽  
Clifton L. Randell ◽  
...  

ABSTRACTFermented vegetables are highly popular internationally in part due to their enhanced nutritional properties, cultural history, and desirable sensorial properties. In some instances, fermented foods provide a rich source of the beneficial microbial communities that could promote gastrointestinal health. The indigenous microbiota that colonize fermentation facilities may impact food quality, food safety, and spoilage risks and maintain the nutritive value of the product. Here, microbiomes within sauerkraut production facilities were profiled to characterize variance across surfaces and to determine the sources of these bacteria. Accordingly, we used high-throughput sequencing of the 16S rRNA gene in combination with whole-genome shotgun analyses to explore biogeographical patterns of microbial diversity and assembly within the production facility. Our results indicate that raw cabbage and vegetable handling surfaces exhibit more similar microbiomes relative to the fermentation room, processing area, and dry storage surfaces. We identified biomarker bacterial phyla and families that are likely to originate from the raw cabbage and vegetable handling surfaces. Raw cabbage was identified as the main source of bacteria to seed the facility, with human handling contributing a minor source of inoculation.LeuconostocandLactobacillaceaedominated all surfaces where spontaneous fermentation occurs, as these taxa are associated with the process. Wall, floor, ceiling, and barrel surfaces host unique microbial signatures. This study demonstrates that diverse bacterial communities are widely distributed within the production facility and that these communities assemble nonrandomly, depending on the surface type.IMPORTANCEFermented vegetables play a major role in global food systems and are widely consumed by various global cultures. In this study, we investigated an industrial facility that produces spontaneous fermented sauerkraut without the aid of starter cultures. This provides a unique system to explore and track the origins of an “in-house” microbiome in an industrial environment. Raw vegetables and the surfaces on which they are handled were identified as the likely source of bacterial communities rather than human contamination. As fermented vegetables increase in popularity on a global scale, understanding their production environment may help maintain quality and safety goals.


2020 ◽  
Vol 7 ◽  
Author(s):  
Bishnu Adhikari ◽  
Guillermo Tellez-Isaias ◽  
Tieshan Jiang ◽  
Brian Wooming ◽  
Young Min Kwon

The importance of microbiota in the health and diseases of farm animals has been well-documented for diverse animal species. However, studies on microbiotas in turkey and turkey farms are relatively limited as compared to other farm animal species. In this study, we performed a comprehensive survey of the litter microbiotas in 5 commercial turkey farms in the Northwest Arkansas (H, M, V, K, and R farms) including one farm with positive incidence of cellulitis (R farm). Altogether 246 boot swabs were used for 16S rRNA gene profiling of bacterial communities. At phylum level, 11 major bacterial phyla (≥0.01%) were recovered. At genus level, 13 major bacterial genera were found whose relative abundance were ≥2%. The microbial composition at both phylum and genus levels as well as their diversities varied across different farms, which were further affected by different flocks within the same farms and the ages of turkeys. Generally, the Firmicutes were higher in the flocks of younger birds, while the Actinobacteria and Bacteroidetes were higher in the flocks of the older birds. The Proteobacteria were highly enriched (47.97%) in K farm housing 56-day-old turkeys (K-56), but Bacteroidetes were found the highest in the flock C of M farm housing 63-day-old turkeys (M-C-63; 22.38%), followed by K-84 group (17.26%). Four core bacterial genera (Staphylococcus, Brevibacterium, Brachybacterium, and Lactobacillus) were identified in all samples except for those from R farm. In contrast, 24 core bacterial genera were found based in all cellulitis-associated samples (R farm), including Corynebacterium, an unknown genus of family Bacillaceae, Clostridium sensu stricto 1 (>97% similarity with C. septicum), and Ignatzschineria among others, suggesting their possible roles in etiopathogenesis of cellulitis in turkeys. Overall results of this study may provide valuable foundation for future studies focusing on the role of microbiota in the health and diseases of turkeys.


Sign in / Sign up

Export Citation Format

Share Document