scholarly journals Developments in Vaccination for Herpes Simplex Virus

2021 ◽  
Vol 12 ◽  
Author(s):  
Rohini Krishnan ◽  
Patrick M. Stuart

Herpes simplex virus (HSV) is an alpha herpes virus, with two subtypes: HSV-1 and HSV-2. HSV is one of the most prevalent sexually transmitted infections. It is the cause of severe neonatal infections and a leading cause of infectious blindness in the Western world. As of 2016, 13.2% of the global population ages 15–49 were existing with HSV-2 infection and 66.6% with HSV-1. This high prevalence of disease and the fact that resistance to current therapies is on the rise makes it imperative to develop and discover new methods of HSV prevention and management. Among the arsenal of therapies/treatments for this virus has been the development of a prophylactic or therapeutic vaccine to prevent the complications of HSV reactivation. Our current understanding of the immune responses involved in latency and reactivation provides a unique challenge to the development of vaccines. There are no approved vaccines currently available for either prophylaxis or therapy. However, there are various promising candidates in the pre-clinical and clinical phases of study. Vaccines are being developed with two broad focuses: preventative and therapeutic, some with a dual use as both immunotherapeutic and prophylactic. Within this article, we will review the current guidelines for the treatment of herpes simplex infections, our understanding of the immunological pathways involved, and novel vaccine candidates in development.

2020 ◽  
Author(s):  
Issakwisa Habakkuk Mwakyula ◽  
Gloria Reginald Mbwile ◽  
Godlove Fred Mbwanji ◽  
David Daniel Nassoro ◽  
Nyanda Elias Ntinginya ◽  
...  

Abstract Background Despite the significant decline in the prevalence of HIV in Tanzania, the prevalence rates in the Mbeya, Iringa, and Njombe regions are higher than the national average and have remained stable for years. The current stable HIV prevalence may be driven by factors such as a high incidence of sexually transmitted infections (STIs) and high-risk behaviours. In sub-Saharan Africa, it has previously been observed that up to 50% of HIV cases were attributed to herpes simplex type 2 (HSV-2) among low-risk populations. Because the proportion of sexually transmitted HSV-1 is rising and HSV-1 tends to cause the shedding of oropharyngeal mucosal ulcers, it is essential to study the interaction between HSV-1 and HIV infections. Methods We conducted a study in the Mbeya region using the archived blood sera of participants from the recently completed EU-funded EMINI project. A specially designed questionnaire was used to obtain the social and demographic characteristics of the study participants in the database. We tested archived participants’ sera for herpes simplex virus type 1 using Virotech HSV-1 (gG1) IgG ELISA (Enzygnost, Behring, Germany). Univariate and multivariate Poisson regression models were used to identify factors associated with HSV-1. Results A total of 640 adults were randomly recruited after stratification by HIV status, age, and sex. The overall seroprevalence of HSV-1 in the study population was 92.1%. The extrapolated prevalence estimate of herpes simplex virus type 1 in the general population was 95.0% (96.0% in males versus 94.0% in females). Males and females were equally affected by HSV-1. HSV-1 was less prevalent in HIV-positive individuals than in HIV-negative individuals.Conclusion People living with HIV were less likely to be HSV-1 seropositive. Further cohort studies can evaluate whether herpes simplex virus type 1 can reduce the incidence of HIV infection.


2014 ◽  
Vol 58 (7) ◽  
pp. 3843-3852 ◽  
Author(s):  
Subhajit Biswas ◽  
Soumi Sukla ◽  
Thomas Goldner ◽  
Hugh J. Field ◽  
Dirk Kropeit ◽  
...  

ABSTRACTHerpes simplex virus (HSV) infections can cause considerable morbidity. Transmission of HSV-2 has become a major health concern, since it has been shown to promote transmission of other sexually transmitted diseases. Pritelivir (AIC316, BAY 57-1293) belongs to a new class of HSV antiviral compounds, the helicase-primase inhibitors, which have a mode of action that is distinct from that of antiviral nucleoside analogues currently in clinical use. Analysis of pharmacokinetic-pharmacodynamic parameters is a useful tool for the selection of appropriate doses in clinical trials, especially for compounds belonging to new classes for which no or only limited data on therapeutic profiles are available. For this purpose, the effective dose of pritelivir was determined in a comprehensive mouse model of HSV infection. Corresponding plasma concentrations were measured, and exposures were compared with efficacious concentrations derived from cell cultures. The administration of pritelivir at 10 mg/kg of body weight once daily for 4 days completely suppressed any signs of HSV infection in the animals. Associated plasma concentrations adjusted for protein binding stayed above the cell culture 90% effective concentration (EC90) for HSV-1 for almost the entire dosing interval. Interestingly, by increasing the dose 6-fold and prolonging the treatment duration to 8 days, it was possible to treat mice infected with an approximately 30-fold pritelivir-resistant but fully pathogenic HSV-1 virus. Corresponding plasma concentrations exceeded the EC90of this mutant for <8 h, indicating that even suboptimal exposure to pritelivir is sufficient to achieve antiviral efficacy, possibly augmented by other factors such as the immune system.


Sexual Health ◽  
2006 ◽  
Vol 3 (4) ◽  
pp. 269 ◽  
Author(s):  
Colin T. S. Theng ◽  
Priya R. Sen ◽  
Tze-Wei M. Chio ◽  
Hiok H. Tan ◽  
Mee L. Wong ◽  
...  

Background: We studied the seroprevalance of HSV (herpes simplex virus)-1 and HSV-2 in outpatient attendees of a sexually transmitted infection (STI) clinic in Singapore and examined their knowledge and attitudes towards HSV infection. Methods: Two hundred male and 200 female participants were recruited in the study. Questionnaires were administered and blood samples were taken and analysed using the HerpeSelect 1 and 2 enzyme-linked immunosorbent assay (ELISA) IgG assays (type-specific serological tests). Results: HSV-1 was positive in 223 (55.8%) individuals, negative in 175 (43.8%) and indeterminate in two (0.5%), whereas HSV-2 was positive in 114 (28.5%) individuals, negative in 284 (71.0%) and indeterminate in two (0.5%). The seroprevalance of HSV-2 was 26% and 31% in males and females, respectively. The correlation between a previous history of cold sores and HSV-1 infection was poor. On univariate analysis, there was a significant association with age, marital status and years of sex (P < 0.05) but after adjusting for confounders, none of the variables were significantly associated with HSV-2 seroprevalance. Most of the respondents (65.8%) were aware that herpes is an STI, whereas only half of them were aware of the possibility of asymptomatic transmission. Conclusion: Although HSV-2 is a common infection among STI clinic attendees in Singapore, there is an unsatisfactory level of knowledge among the attendees about HSV infection and public education programs should be introduced to address this.


2015 ◽  
Vol 89 (13) ◽  
pp. 6619-6632 ◽  
Author(s):  
Arif A. Khan ◽  
Ruchi Srivastava ◽  
Aziz A. Chentoufi ◽  
Roger Geertsema ◽  
Nhi Thi Uyen Thai ◽  
...  

ABSTRACTMost blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8+T cells from “naturally” protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8+T-cell epitopes (gD53–61, gD70–78, and gD278–286) were linked with a promiscuous CD4+T-cell epitope (gD287–317) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8+T cells that prevent HSV-1 reactivationex vivofrom latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8+T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1+TIM-3+CD8+T cells. The results underscore the potential of an ASYMP CD8+T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes.IMPORTANCESeventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. To date, there is no licensed therapeutic vaccine that can effectively stop or reduce HSV-1 reactivation from latently infected sensory ganglia and the subsequent shedding in tears. In the present study, we demonstrated that topical ocular therapeutic vaccination of latently infected HLA transgenic rabbits with a lipopeptide vaccine that contains exclusively human “asymptomatic” CD8+T-cell epitopes successfully decreased spontaneous HSV-1 reactivation, as judged by a significant reduction in spontaneous shedding in tears. The findings should guide the clinical development of a safe and effective T-cell-based therapeutic herpes vaccine.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


2007 ◽  
Vol 81 (18) ◽  
pp. 9653-9664 ◽  
Author(s):  
Satoko Iwahori ◽  
Noriko Shirata ◽  
Yasushi Kawaguchi ◽  
Sandra K. Weller ◽  
Yoshitaka Sato ◽  
...  

ABSTRACT The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


Sign in / Sign up

Export Citation Format

Share Document