scholarly journals Targeting Ubiquitin–Proteasome System With Copper Complexes for Cancer Therapy

2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Chen ◽  
Q. Ping Dou ◽  
Jinbao Liu ◽  
Daolin Tang

Characterizing mechanisms of protein homeostasis, a process of balancing between protein synthesis and protein degradation, is important for understanding the potential causes of human diseases. The ubiquitin–proteasome system (UPS) is a well-studied mechanism of protein catabolism, which is responsible for eliminating misfolded, damaged, or aging proteins, thereby maintaining quality and quantity of cellular proteins. The UPS is composed of multiple components, including a series of enzymes (E1, E2, E3, and deubiquitinase [DUB]) and 26S proteasome (19S regulatory particles + 20S core particle). An impaired UPS pathway is involved in multiple diseases, including cancer. Several proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib, are approved to treat patients with certain cancers. However, their applications are limited by side effects, drug resistance, and drug–drug interactions observed in their clinical processes. To overcome these shortcomings, alternative UPS inhibitors have been searched for in many fields. Copper complexes (e.g., CuET, CuHQ, CuCQ, CuPDTC, CuPT, and CuHK) are found to be able to inhibit a core component of the UPS machinery, such as 20S proteasome, 19S DUBs, and NPLOC4/NPL4 complex, and are proposed to be one class of metal-based anticancer drugs. In this review, we will summarize functions and applications of copper complexes in a concise perspective, with a focus on connections between the UPS and cancer.

2019 ◽  
Vol 18 (12) ◽  
pp. 1656-1673
Author(s):  
Xinjie Gu ◽  
Shutao Ma

Background: The 26S proteasome is a proteolytic complex of multimeric protease, which operates at the executive end of the Ubiquitin-Proteasome System (UPS) and degrades the polyubiquitylated proteins. Methods: After a brief introduction of 26S proteasome and Ubiquitin-Proteasome System (UPS), this review focuses on the structure and function of the 26S proteasome in intracellular protein level regulation. Then, physiological regulation mechanisms and processes are elaborated. In addition, the advantages and defects of approved 26S proteasome inhibitors were discussed. Finally, we summarized the novel peptide 26S proteasome inhibitors according to their structural classifications, highlighting their design strategies, inhibitory activity and Structure-Activity Relationships (SARs). Results: Cellular function maintenance relies on the proteasome metabolizing intracellular proteins to control intracellular protein levels, which is especially important for cancer cells to survive and proliferate. In primary tumors, proteasomes had a higher level and more potent activity. Currently, the approved small peptide inhibitors have proved their specific 26S proteasome inhibitory effects and considerable antitumor activities, but with obvious defects. Increasingly, novel peptide inhibitors are emerging and possess promising values in cancer therapy. Conclusion: Overall, the 26S proteasome is an efficient therapeutic target and novel 26S proteasome inhibitors hold potency for cancer therapy.


2017 ◽  
Vol 114 (6) ◽  
pp. 1305-1310 ◽  
Author(s):  
Marc Wehmer ◽  
Till Rudack ◽  
Florian Beck ◽  
Antje Aufderheide ◽  
Günter Pfeifer ◽  
...  

In eukaryotic cells, the ubiquitin–proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.


2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Yanyan Gu ◽  
Benjamin G. Barwick ◽  
Mala Shanmugam ◽  
Craig C. Hofmeister ◽  
Jonathan Kaufman ◽  
...  

AbstractProtein homeostasis is critical for maintaining eukaryotic cell function as well as responses to intrinsic and extrinsic stress. The proteasome is a major portion of the proteolytic machinery in mammalian cells and plays an important role in protein homeostasis. Multiple myeloma (MM) is a plasma cell malignancy with high production of immunoglobulins and is especially sensitive to treatments that impact protein catabolism. Therapeutic agents such as proteasome inhibitors have demonstrated significant benefit for myeloma patients in all treatment phases. Here, we demonstrate that the 11S proteasome activator PA28α is upregulated in MM cells and is key for myeloma cell growth and proliferation. PA28α also regulates MM cell sensitivity to proteasome inhibitors. Downregulation of PA28α inhibits both proteasomal load and activity, resulting in a change in protein homeostasis less dependent on the proteasome and leads to cell resistance to proteasome inhibitors. Thus, our findings suggest an important role of PA28α in MM biology, and also provides a new approach for targeting the ubiquitin-proteasome system and ultimately sensitivity to proteasome inhibitors.


2020 ◽  
Vol 318 (3) ◽  
pp. C451-C462 ◽  
Author(s):  
Paula Saavedra-García ◽  
Francesca Martini ◽  
Holger W. Auner

Cellular protein homeostasis (proteostasis) depends on the controlled degradation of proteins that are damaged or no longer required by the ubiquitin-proteasome system (UPS). The 26S proteasome is the principal executer of substrate-specific proteolysis in eukaryotic cells and regulates a myriad of cellular functions. Proteasome inhibitors were initially developed as chemical tools to study proteasomal function but rapidly became widely used anticancer drugs that are now used at all stages of treatment for the bone marrow cancer multiple myeloma (MM). Here, we review the mechanisms of action of proteasome inhibitors that underlie their preferential toxicity to MM cells, focusing on endoplasmic reticulum stress, depletion of amino acids, and effects on glucose and lipid metabolism. We also discuss mechanisms of resistance to proteasome inhibition such as autophagy and metabolic rewiring and what lessons we may learn from the success and failure of proteasome inhibition in MM for treating other cancers with proteostasis-targeting drugs.


Author(s):  
Kalyn M Rambacher ◽  
Matthew F Calabrese ◽  
Masaya Yamaguchi

Targeted protein degradation is a broad and expanding field aimed at the modulation of protein homeostasis. A focus of this field has been directed toward molecules that hijack the ubiquitin proteasome system with heterobifunctional ligands that recruit a target protein to an E3 ligase to facilitate polyubiquitination and subsequent degradation by the 26S proteasome. Despite the success of these chimeras toward a number of clinically relevant targets, the ultimate breadth and scope of this approach remains uncertain. Here we highlight recent advances in assays and tools available to evaluate targeted protein degradation, including and beyond the study of E3-targeted chimeric ligands. We note several challenges associated with degrader development and discuss various approaches to expanding the protein homeostasis toolbox.


2014 ◽  
Vol 22 (1) ◽  
pp. T1-T17 ◽  
Author(s):  
Daniel E Johnson

The destruction of proteins via the ubiquitin–proteasome system is a multi-step, complex process involving polyubiquitination of substrate proteins, followed by proteolytic degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome promote the accumulation of proteins that are deleterious to cell survival, and represent promising anti-cancer agents. In multiple myeloma and mantle cell lymphoma, treatment with the first-generation proteasome inhibitor, bortezomib, or the second-generation inhibitor, carfilzomib, has demonstrated significant therapeutic benefit in humans. This has prompted United States Food and Drug Administration (US FDA) approval of these agents and development of additional second-generation compounds with improved properties. There is considerable interest in extending the benefits of proteasome inhibitors to the treatment of solid tumor malignancies. Herein, we review progress that has been made in the preclinical development and clinical evaluation of different proteasome inhibitors in solid tumors. In addition, we describe several novel approaches that are currently being pursued for the treatment of solid tumors, including drug combinatorial strategies incorporating proteasome inhibitors and the targeting of components of the ubiquitin–proteasome system that are distinct from the 26S proteasome complex.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3431
Author(s):  
Levente Kollár ◽  
Martina Gobec ◽  
Matic Proj ◽  
Lara Smrdel ◽  
Damijan Knez ◽  
...  

Constitutive- and immunoproteasomes are part of the ubiquitin–proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1577
Author(s):  
Nuria Tubío-Santamaría ◽  
Frédéric Ebstein ◽  
Florian H. Heidel ◽  
Elke Krüger

The ubiquitin–proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.


2001 ◽  
Vol 12 (5) ◽  
pp. 1393-1407 ◽  
Author(s):  
Stephanie Waelter ◽  
Annett Boeddrich ◽  
Rudi Lurz ◽  
Eberhard Scherzinger ◽  
Gerhild Lueder ◽  
...  

The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with truncated huntingtin protein are formed at centrosomes and are surrounded by vimentin filaments. Inhibition of proteasome activity resulted in a twofold increase in the amount of ubiquitinated, SDS-resistant aggregates, indicating that inclusion bodies accumulate when the capacity of the ubiquitin–proteasome system to degrade aggregation-prone huntingtin protein is exhausted. Immunofluorescence and electron microscopy with immunogold labeling revealed that the 20S, 19S, and 11S subunits of the 26S proteasome, the molecular chaperones BiP/GRP78, Hsp70, and Hsp40, as well as the RNA-binding protein TIA-1, the potential chaperone 14–3-3, and α-synuclein colocalize with the perinuclear inclusions. In 293 Tet-Off cells, inclusion body formation also resulted in cell toxicity and dramatic ultrastructural changes such as indentations and disruption of the nuclear envelope. Concentration of mitochondria around the inclusions and cytoplasmic vacuolation were also observed. Together these findings support the hypothesis that the ATP-dependent ubiquitin–proteasome system is a potential target for therapeutic interventions in glutamine repeat disorders.


2020 ◽  
Author(s):  
Ganapathi Kandasamy ◽  
Ashis Kumar Pradhan ◽  
R Palanimurugan

AbstractDegradation of short-lived and abnormal proteins are essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Furthermore, abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4 protein is a known component of the Ccr4-Not complex, which has established roles in transcription, mRNA de-adenylation and RNA degradation etc. Excitingly in this study, we show that Ccr4 protein has a novel function as a shuttle factor that promotes ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4 in Saccharomyces cerevisiae. Additionally, we show that Ccr4 binds to cellular ubiquitin conjugates and the proteasome. In contrast to Ccr4, most other subunits of the Ccr4-Not complex proteins are dispensable for UFD substrate degradation. From our findings we conclude that Ccr4 functions in the UPS as a shuttle factor targeting ubiquitylated substrates for proteasomal degradation.


Sign in / Sign up

Export Citation Format

Share Document