scholarly journals Cerebral Metabolite Concentrations Are Associated With Cortical and Subcortical Volumes and Cognition in Older Adults

2021 ◽  
Vol 12 ◽  
Author(s):  
John B. Williamson ◽  
Damon G. Lamb ◽  
Eric C. Porges ◽  
Sarah Bottari ◽  
Adam J. Woods ◽  
...  

BackgroundCerebral metabolites are associated with different physiological processes in brain aging. Cortical and limbic structures play important roles in cognitive aging; however, the relationship between these structures and age remains unclear with respect to physiological underpinnings. Regional differences in metabolite levels may be related to different structural and cognitive changes in aging.MethodsMagnetic resonance imaging and spectroscopy were obtained from 117 cognitively healthy older adults. Limbic and other key structural volumes were measured. Concentrations of N-acetylaspartate (NAA) and choline-containing compounds (Cho) were measured in frontal and parietal regions. Neuropsychological testing was performed including measures of crystallized and fluid intelligence and memory.ResultsNAA in the frontal voxel was associated with limbic and cortical volumes, whereas Cho in parietal cortex was negatively associated with hippocampal and other regional volumes. Hippocampal volume was associated with forgetting, independent of age. Further, parietal Cho and hippocampal volume contributed independent variance to age corrected discrepancy between fluid and crystallized abilities.ConclusionThese findings suggest that physiological changes with age in the frontal and parietal cortices may be linked to structural changes in other connected brain regions. These changes are differentially associated with cognitive performance, suggesting potentially divergent mechanisms.

2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2022 ◽  
pp. 1-17
Author(s):  
Ondrej Lerch ◽  
Martina Pařízková ◽  
Martin Vyhnálek ◽  
Zuzana Nedelská ◽  
Jakub Hort ◽  
...  

Background: Cholinergic deficit and medial temporal lobe (MTL) atrophy are hallmarks of Alzheimer’s disease (AD) leading to early allocentric spatial navigation (aSN) impairment. APOE ɛ4 allele (E4) is a major genetic risk factor for late-onset AD and contributes to cholinergic dysfunction. Basal forebrain (BF) nuclei, the major source of acetylcholine, project into multiple brain regions and, along with MTL and prefrontal cortex (PFC), are involved in aSN processing. Objective: We aimed to determine different contributions of individual BF nuclei atrophy to aSN in E4 positive and E4 negative older adults without dementia and assess whether they operate on aSN through MTL and PFC or independently from these structures. Methods: 120 participants (60 E4 positive, 60 E4 negative) from the Czech Brain Aging Study underwent structural MRI and aSN testing in real-space arena setting. Hippocampal and BF nuclei volumes and entorhinal cortex and PFC thickness were obtained. Associations between brain regions involved in aSN were assessed using MANOVA and complex model of mutual relationships was built using structural equation modelling (SEM). Results: Path analysis based on SEM modeling revealed that BF Ch1-2, Ch4p, and Ch4ai nuclei volumes were indirectly associated with aSN performance through MTL (pch1 - 2 = 0.039; pch4p = 0.042) and PFC (pch4ai = 0.044). In the E4 negative group, aSN was indirectly associated with Ch1-2 nuclei volumes (p = 0.015), while in the E4 positive group, there was indirect effect of Ch4p nucleus (p = 0.035). Conclusion: Our findings suggest that in older adults without dementia, BF nuclei affect aSN processing indirectly, through MTL and PFC, and that APOE E4 moderates these associations.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S543-S543
Author(s):  
Indira C Turney ◽  
Miguel Arce Rentería ◽  
Anthony G Chesebro ◽  
Juliet M Colon ◽  
Nicole Schupf ◽  
...  

Abstract Socioeconomic disadvantages in childhood has been linked to dementia in late life. However, the underlying pathways through which childhood socioeconomic status (CSES) affects health in old age is unclear. CSES has been linked to age-related differences in regions affected by Alzheimer’s disease (AD; e.g., hippocampus). CSES varies across race/ethnicity; It is critical to examine the relationship between CSES and age-related brain structural changes across diverse aging populations. We used an established proxy for CSES, number of siblings (i.e., sibship size), to examine whether CSES buffered age-related changes in hippocampal volume in a community-based sample of racially/ethnically diverse older adults. Sibship size moderated age-related differences in hippocampal volume in Whites (β=-5.61[-11.09,-0.12]), but not in Blacks and Hispanics. Results indicate that Whites with no sibling (vs. Whites with siblings) show less age-related difference in hippocampal volume. Future analyses will examine other CSES factors (i.e., parental education/occupation) on age-related structural changes across race/ethnicity.


2019 ◽  
Author(s):  
T. Hinault ◽  
M. Kraut ◽  
A. Bakker ◽  
A. Dagher ◽  
S.M. Courtney

AbstractOur main goal was to determine the influence of white matter integrity on the dynamic coupling between brain regions and the individual variability of cognitive performance in older adults. EEG was recorded while participants performed a task specifically designed to engage working memory and inhibitory processes, and the associations among functional activity, structural integrity, and cognitive performance were assessed. We found that the association between white matter microstructural integrity and cognitive functioning with aging is mediated by time-varying alpha and gamma phase-locking value (PLV). Specifically, older individuals with better preservation of the inferior fronto-occipital fasciculus showed greater task-related modulations of alpha and gamma long-range PLV between the inferior frontal gyrus and occipital lobe, lower local phase-amplitude coupling in occipital lobes, and better cognitive control performance. Our results help delineate the role of individual variability of white matter microstructure in dynamic synchrony and cognitive performance during normal aging, and show that even small reductions in white matter integrity can lead to altered communications between brain regions, which in turn can result in reduced efficiency of cognitive functioning.Significance statementCognitive aging is associated with large individual differences, as some individuals maintain cognitive performance similar to that of young adults while others are significantly impaired. We hypothesized that individual differences in white matter integrity would influence the functional synchrony between frontal and posterior brain regions, and cognitive performance in older adults. We found that the association between reduced tract integrity and worse cognitive performance in older adults was mediated by task-related modulations of coupling synchrony in the alpha and gamma bands. Results offer a mechanistic explanation for the neural basis of the variability of cognitive performance in older adults who do not have any clinically diagnosable neuropathology, and for the association between structural network integrity and cognition in older adults.


2019 ◽  
Vol 21 (3) ◽  
pp. 319-330 ◽  

Video gaming as a popular form of leisure activity and its effect on cognition, brain function, and structure has come into focus in the field of neuroscience. Visuospatial cognition and attention seem to benefit the most, whereas for executive functions, memory, and general cognition, the results are contradictory. The particular characteristics of video games driving these effects remain poorly understood. We critically discuss major challenges for the existing research, namely, the lack of precise definitions of video gaming, the lack of distinct choice of cognitive ability under study, and the lack of standardized study protocols. Less research exists on neural changes in addition to cognitive changes due to video gaming. Existing studies reveal evidence for the involvement of similar brain regions in functional and structural changes. There seems to be a predominance in the hippocampal, prefrontal, and parietal brain regions; however, studies differ immensely, which makes a meta-analytic interpretation vulnerable. We conclude that theoretical work is urgently needed.


2017 ◽  
Vol 62 (11) ◽  
pp. 754-760 ◽  
Author(s):  
Julie A. Dumas

Objective: Many advances have been made in the understanding of age-related changes in cognition. As research details the cognitive and neurobiological changes that occur in aging, there is increased interest in developing and understanding methods to prevent, slow, or reverse the cognitive decline that may occur in normal healthy older adults. The Institute of Medicine has recently recognized cognitive aging as having important financial and public health implications for society with the increasing older adult population worldwide. Cognitive aging is not dementia and does not result in the loss of neurons but rather changes in neurotransmission that affect brain functioning. The fact that neurons are structurally intact but may be functionally affected by increased age implies that there is potential for remediation. Method and Results: This review article presents recent work using medication-based strategies for slowing cognitive changes in aging. The primary method presented is a hormonal approach for affecting cognition in older women. In addition, a summary of the work examining modifiable lifestyle factors that have shown promise in benefiting cognition in both older men and women is described. Conclusions: Much work remains to be done so that evidence-based recommendations can be made for slowing cognitive decline in healthy older adults. The success of some of these methods thus far indicates that the brains of healthy older adults are plastic enough to be able to respond to these cognitive decline prevention strategies, and further work is needed to define the most beneficial methods.


Neurology ◽  
2017 ◽  
Vol 89 (17) ◽  
pp. 1782-1788 ◽  
Author(s):  
Kaitlin B. Casaletto ◽  
Fanny M. Elahi ◽  
Brianne M. Bettcher ◽  
John Neuhaus ◽  
Barbara B. Bendlin ◽  
...  

Objective:To determine the association between synaptic functioning as measured via neurogranin in CSF and cognition relative to established Alzheimer disease (AD) biomarkers in neurologically healthy older adults.Methods:We analyzed CSF concentrations of neurogranin, β-amyloid (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau) among 132 neurologically normal older adults (mean 64.5, range 55–85), along with bilateral hippocampal volumes and a measure of episodic memory (Auditory Verbal Learning Test, delayed recall). Univariable analyses examined the relationship between neurogranin and the other AD-related biomarkers. Multivariable regression models examined the relationship between neurogranin and delayed recall, adjusting for age and sex, and interaction terms (neurogranin × AD biomarkers).Results:Higher neurogranin concentrations were associated with older age (ρ = 0.20, p = 0.02), lower levels of p-tau and t-tau, and smaller hippocampal volumes (p < 0.03), but not with CSF Aβ42 (p = 0.18). In addition, CSF neurogranin demonstrated a significant relationship with memory performance independent of the AD-related biomarkers; individuals with the lowest CSF neurogranin concentrations performed better on delayed recall than those with medium or high CSF neurogranin concentrations (p < 0.01). Notably, CSF p-tau, t-tau, and Aβ42 and hippocampal volumes were not significantly associated with delayed recall scores (p > 0.40), and did not interact with neurogranin to predict memory (p > 0.10).Conclusions:Synaptic dysfunction (assessed via neurogranin) may be an early pathologic process in age-related neurodegeneration, and a sensitive marker of age-related cognitive abilities, potentially preceding or even acting independently from AD pathogenesis. Synaptic functioning may be a useful early marker of cognitive aging and possibly a target for future brain aging interventions.


2001 ◽  
Vol 3 (3) ◽  
pp. 151-165 ◽  

There are substantial declines in behavioral measures of cognitive function with age, including decreased function of executive processes and long-term memory. There is also evidence that, with age, there is a decrease in brain volume, particularly in the frontal cortex. When young and older adults perform cognitive tasks that depend heavily on frontal function, neuroimaging evidence indicates that older adults recruit additional brain regions in order to perform the tasks. This additional neural recruitment is termed "dedifferentiation," and can take multiple forms. This recruitment of additional neural tissue with age to perform cognitive tasks was not reflected in the behavioral literature, and suggests that there is more plasticity in the ability to organize brain function than was previously suspected. We review both behavioral and neuroscience perspectives on cognitive aging, and then connect the findings in the two areas. From this integration, we suggest important unresolved questions and directions for future research.


2019 ◽  
Author(s):  
Chris M. Foster ◽  
Kelly S. Giovanello

Several prominent domain general theories (e.g., processing speed and inhibitory function) have been developed to explain cognitive changes associated with aging. A bias to “pattern complete” in aging has also been suggested to account for age-related changes that are specific to episodic memory. The current experiments test whether domain-general processes of cognitive aging moderate the bias to pattern complete. The study phase of the mnemonic similarity task, a memory task with old, new, and similar trials at recognition, was manipulated to assess the contribution of processing speed (Experiment 1 – different encoding times) and inhibitory function (Experiment 2 – item-level directed forgetting) to the age-related bias to pattern complete in a sample of 100 healthy younger and older adults. Both experiments exhibited significant interactions between age group and encoding manipulation, replicating a bias to pattern complete in aging, and indicating that processing speed and inhibitory function moderate this effect. Age-related differences in performance on the mnemonic similarity task are moderated by experimental manipulations of domain general processes that also decline with age, providing evidence for conditions that can ameliorate and explain performance decrements on the mnemonic similarity task in older adults.


Neurology ◽  
2017 ◽  
Vol 90 (3) ◽  
pp. e197-e205 ◽  
Author(s):  
Hwamee Oh ◽  
Qolamreza R. Razlighi ◽  
Yaakov Stern

ObjectiveTo examine neural correlates of intellectual activity underlying multiple pathways imparting reserve by testing that higher intellectual activity is associated with lower brain amyloid pathology, greater gray matter (GM) volume, and differential task-evoked brain activation levels as a function of amyloid positivity status among clinically intact older adults.MethodsEighty-two cognitively normal older adults and 46 healthy young participants underwent fMRI during task switching. All older participants completed 18F-florbetaben-PET and an individual's amyloid positivity status was determined. To assess GM volume, T1-weighted high-resolution structural images were processed using voxel-based morphometry. As lifestyle factors, intellectual activity was estimated by a composite score of vocabulary, reading ability, and years of education.ResultsAcross all older participants, intellectual activity was associated with lower amyloid deposition in lateral and medial frontoparietal and temporal lobes but higher amyloid deposition in superior frontal and parietal cortices, larger GM volume across widespread brain regions, and reduced brain activation during task switching. These patterns of associations, however, differed by amyloid positivity status. While the patterns of associations remained similar among amyloid-negative older adults, among amyloid-positive older adults, intellectual activity was associated with increased amyloid deposition in frontoparietal cortices and increased activation during task.ConclusionsIntellectual activity simultaneously exerts both neuroprotective and compensatory effects via multiple neural pathways that promote optimal brain aging and help maintain normal cognition during amyloid accumulation.


Sign in / Sign up

Export Citation Format

Share Document