scholarly journals Domain general processes moderate age-related performance differences on the mnemonic similarity task

2019 ◽  
Author(s):  
Chris M. Foster ◽  
Kelly S. Giovanello

Several prominent domain general theories (e.g., processing speed and inhibitory function) have been developed to explain cognitive changes associated with aging. A bias to “pattern complete” in aging has also been suggested to account for age-related changes that are specific to episodic memory. The current experiments test whether domain-general processes of cognitive aging moderate the bias to pattern complete. The study phase of the mnemonic similarity task, a memory task with old, new, and similar trials at recognition, was manipulated to assess the contribution of processing speed (Experiment 1 – different encoding times) and inhibitory function (Experiment 2 – item-level directed forgetting) to the age-related bias to pattern complete in a sample of 100 healthy younger and older adults. Both experiments exhibited significant interactions between age group and encoding manipulation, replicating a bias to pattern complete in aging, and indicating that processing speed and inhibitory function moderate this effect. Age-related differences in performance on the mnemonic similarity task are moderated by experimental manipulations of domain general processes that also decline with age, providing evidence for conditions that can ameliorate and explain performance decrements on the mnemonic similarity task in older adults.

2015 ◽  
Vol 112 (24) ◽  
pp. 7593-7598 ◽  
Author(s):  
Douglas D. Garrett ◽  
Irene E. Nagel ◽  
Claudia Preuschhof ◽  
Agnieszka Z. Burzynska ◽  
Janina Marchner ◽  
...  

Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.


2017 ◽  
Vol 62 (11) ◽  
pp. 754-760 ◽  
Author(s):  
Julie A. Dumas

Objective: Many advances have been made in the understanding of age-related changes in cognition. As research details the cognitive and neurobiological changes that occur in aging, there is increased interest in developing and understanding methods to prevent, slow, or reverse the cognitive decline that may occur in normal healthy older adults. The Institute of Medicine has recently recognized cognitive aging as having important financial and public health implications for society with the increasing older adult population worldwide. Cognitive aging is not dementia and does not result in the loss of neurons but rather changes in neurotransmission that affect brain functioning. The fact that neurons are structurally intact but may be functionally affected by increased age implies that there is potential for remediation. Method and Results: This review article presents recent work using medication-based strategies for slowing cognitive changes in aging. The primary method presented is a hormonal approach for affecting cognition in older women. In addition, a summary of the work examining modifiable lifestyle factors that have shown promise in benefiting cognition in both older men and women is described. Conclusions: Much work remains to be done so that evidence-based recommendations can be made for slowing cognitive decline in healthy older adults. The success of some of these methods thus far indicates that the brains of healthy older adults are plastic enough to be able to respond to these cognitive decline prevention strategies, and further work is needed to define the most beneficial methods.


2021 ◽  
Author(s):  
Matthew Kyle Robison ◽  
Nathaniel T. Diede ◽  
Jessica Nicosia ◽  
Hunter Ball ◽  
Julie Bugg

Age-related cognitive decline has been attributed to processing speed differences, as well as differences in executive control and response inhibition. However, recent research has shown that healthy older adults have intact, if not superior, sustained attention abilities compared to younger adults. The present study used a combination of reaction time, thought probes, and pupillometry to measure sustained attention in samples of younger and older adults. The reaction time data revealed that, while slightly slower overall, older adults sustained their attention to the task better than younger adults, and did not show a vigilance decrement. Older adults also reported fewer instances of task-unrelated thoughts and reported feeling more motivated and alert than younger adults, despite finding the task more demanding. Additionally, older adults showed larger, albeit later-peaking, task-evoked pupillary responses, corroborating the behavioral and self-report data. Finally, older adults did not show a shallowing of task-evoked pupillary responses across time, corroborating the finding that their reaction times also did not change across time. The present findings are interpreted in light of processing speed theory, resource-depletion theories of vigilance, and recent neurological theories of cognitive aging.


Author(s):  
Yvonne Rogalski ◽  
Muriel Quintana

The population of older adults is rapidly increasing, as is the number and type of products and interventions proposed to prevent or reduce the risk of age-related cognitive decline. Advocacy and prevention are part of the American Speech-Language-Hearing Association’s (ASHA’s) scope of practice documents, and speech-language pathologists must have basic awareness of the evidence contributing to healthy cognitive aging. In this article, we provide a brief overview outlining the evidence on activity engagement and its effects on cognition in older adults. We explore the current evidence around the activities of eating and drinking with a discussion on the potential benefits of omega-3 fatty acids, polyphenols, alcohol, and coffee. We investigate the evidence on the hypothesized neuroprotective effects of social activity, the evidence on computerized cognitive training, and the emerging behavioral and neuroimaging evidence on physical activity. We conclude that actively aging using a combination of several strategies may be our best line of defense against cognitive decline.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


GeroScience ◽  
2021 ◽  
Author(s):  
Monica Baciu ◽  
Sonja Banjac ◽  
Elise Roger ◽  
Célise Haldin ◽  
Marcela Perrone-Bertolotti ◽  
...  

AbstractIn the absence of any neuropsychiatric condition, older adults may show declining performance in several cognitive processes and among them, in retrieving and producing words, reflected in slower responses and even reduced accuracy compared to younger adults. To overcome this difficulty, healthy older adults implement compensatory strategies, which are the focus of this paper. We provide a review of mainstream findings on deficient mechanisms and possible neurocognitive strategies used by older adults to overcome the deleterious effects of age on lexical production. Moreover, we present findings on genetic and lifestyle factors that might either be protective or risk factors of cognitive impairment in advanced age. We propose that “aging-modulating factors” (AMF) can be modified, offering prevention opportunities against aging effects. Based on our review and this proposition, we introduce an integrative neurocognitive model of mechanisms and compensatory strategies for lexical production in older adults (entitled Lexical Access and Retrieval in Aging, LARA). The main hypothesis defended in LARA is that cognitive aging evolves heterogeneously and involves complementary domain-general and domain-specific mechanisms, with substantial inter-individual variability, reflected at behavioral, cognitive, and brain levels. Furthermore, we argue that the ability to compensate for the effect of cognitive aging depends on the amount of reserve specific to each individual which is, in turn, modulated by the AMF. Our conclusion is that a variety of mechanisms and compensatory strategies coexist in the same individual to oppose the effect of age. The role of reserve is pivotal for a successful coping with age-related changes and future research should continue to explore the modulating role of AMF.


2016 ◽  
Vol 6 (1-2) ◽  
pp. 119-146 ◽  
Author(s):  
Henrike K. Blumenfeld ◽  
Scott R. Schroeder ◽  
Susan C. Bobb ◽  
Max R. Freeman ◽  
Viorica Marian

Abstract Recent research suggests that bilingual experience reconfigures linguistic and nonlinguistic cognitive processes. We examined the relationship between linguistic competition resolution and nonlinguistic cognitive control in younger and older adults who were either bilingual or monolingual. Participants heard words in English and identified the referent among four pictures while eye-movements were recorded. Target pictures (e.g., cab) appeared with a phonological competitor picture (e.g., cat) and two filler pictures. After each eye-tracking trial, priming probes assessed residual activation and inhibition of target and competitor words. When accounting for processing speed, results revealed that age-related changes in activation and inhibition are smaller in bilinguals than in monolinguals. Moreover, younger and older bilinguals, but not monolinguals, recruited similar inhibition mechanisms during word identification and during a nonlinguistic Stroop task. Results suggest that, during lexical access, bilinguals show more consistent competition resolution and recruitment of cognitive control across the lifespan than monolinguals.


2017 ◽  
Vol 29 (9) ◽  
pp. 1405-1407
Author(s):  
Viviana M. Wuthrich

It is well-established that as people age, deterioration in cognitive abilities including processing speed, memory, and cognitive flexibility occurs, although vast individual differences occur in the rate and consequences of this decline (Christensen, 2001). Anxiety and depression in late life are also associated with specific cognitive deficits in memory and executive functioning that may impact on new learning (Yochim et al., 2013). Therefore, it is possible that cognitive changes make it more difficult for older adults to learn how to change their thinking particularly in the context of psychological therapy.


2019 ◽  
Author(s):  
Meaghan Elizabeth Spedden ◽  
Mikkel Malling Beck ◽  
Mark Schram Christensen ◽  
Martin Jensen Dietz ◽  
Anke Ninija Karabanov ◽  
...  

AbstractThe control of ankle muscle force is an integral component of walking and postural control. Aging impairs the ability to produce force steadily and accurately, which can compromise functional capacity and quality of life. Here, we hypothesized that reduced force control in older adults would be associated with altered cortico-cortical communication within a network comprising the primary motor area (M1), the premotor cortex (PMC), parietal, and prefrontal regions. We examined electroencephalographic (EEG) responses from fifteen younger (20-26 yr) and fifteen older (65-73 yr) participants during a unilateral dorsiflexion force-tracing task. Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) were used to investigate how directed connectivity between contralateral M1, PMC, parietal, and prefrontal regions was related to age group and precision in force production. DCM and PEB analyses revealed that the strength of connections between PMC and M1 were related to ankle force precision and differed by age group. For young adults, bidirectional PMC-M1 coupling was negatively related to task performance: stronger backward M1-PMC and forward PMC-M1 coupling was associated with worse force precision. The older group exhibited deviations from this pattern. For the PMC to M1 coupling, there were no age-group differences in coupling strength; however, within the older group, stronger coupling was associated with better performance. For the M1 to PMC coupling, older adults followed the same pattern as young adults - with stronger coupling accompanied by worse performance - but coupling strength was lower than in the young group. Our results suggest that bidirectional M1-PMC communication is related to precision in ankle force production and that this relationship changes with aging. We argue that the observed age-related differences reflect compensatory mechanisms whereby older adults maintain performance in the face of declines in the sensorimotor system.


Geriatrics ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 63
Author(s):  
Frank Knoefel ◽  
Bruce Wallace ◽  
Rafik Goubran ◽  
Iman Sabra ◽  
Shawn Marshall

Losing the capacity to drive due to age-related cognitive decline can have a detrimental impact on the daily life functioning of older adults living alone and in remote areas. Semi-autonomous vehicles (SAVs) could have the potential to preserve driving independence of this population with high health needs. This paper explores if SAVs could be used as a cognitive assistive device for older aging drivers with cognitive challenges. We illustrate the impact of age-related changes of cognitive functions on driving capacity. Furthermore, following an overview on the current state of SAVs, we propose a model for connecting cognitive health needs of older drivers to SAVs. The model demonstrates the connections between cognitive changes experienced by aging drivers, their impact on actual driving, car sensors’ features, and vehicle automation. Finally, we present challenges that should be considered when using the constantly changing smart vehicle technology, adapting it to aging drivers and vice versa. This paper sheds light on age-related cognitive characteristics that should be considered when developing future SAVs manufacturing policies which may potentially help decrease the impact of cognitive change on older adult drivers.


Sign in / Sign up

Export Citation Format

Share Document