scholarly journals Functional Connectivity Derived From Electroencephalogram in Pharmacoresistant Epileptic Encephalopathy Using Cannabidiol as Adjunctive Antiepileptic Therapy

2021 ◽  
Vol 15 ◽  
Author(s):  
Lilia Maria Morales Chacón ◽  
Lidice Galan García ◽  
Sheyla Berrillo Batista ◽  
Judith González González ◽  
Abel Sánchez Coroneaux

To explore brain function using functional connectivity and network topology derived from electroencephalogram (EEG) in patients with pharmacoresistant epileptic encephalopathy with cannabidiol as adjunctive antiepileptic treatment. Sixteen epileptic patients participated in the study, six of whom had epileptic encephalopathy with a stable dose of cannabidiol Epidiolex (CBD) as adjunctive therapy. Functional connectivity derived from EEG was analyzed based on the synchronization likelihood (SL). The analysis also included reconstructing graph-theoretic measures from the synchronization matrix. Comparison of functional connectivity data between each pathological group with the control group was carried out using a nonparametric permutation test applied to SL values between pairs of electrodes for each frequency band. To compare the association patterns between graph-theoretical properties of each pathological group with the control group, Z Crawford was calculated as a measure of distance. There were differences between pairs of electrodes in all frequency bands evaluated in encephalopathy epileptic patients with CBD adjunctive therapy compared with the control (p < 0.05, permutation test). In the epileptic encephalopathy group without CBD therapy, the SL values were higher than in the control group for the beta, theta, and delta EEG frequency bands, and lower for the alpha frequency band. Interestingly, patients who had CBD as adjunctive therapy demonstrated greater synchronization for all frequency bands, showing less spatial distribution for alpha frequency compared with the control. When comparing both epileptic groups, those patients who had adjunctive CBD treatment also showed increased synchronization for all frequency bands. In epileptic encephalopathy with adjunctive CBD therapy, the pattern of differences for graph-theoretical measures according to Z Crawford indicated less segregation and greater integration suggesting a trend towards the random organization of the network principally for alpha and beta EEG bands. This exploratory study revealed a tendency to an overconnectivity with a random network topology mainly for fast EEG bands in epileptic encephalopathy patients using CBD adjunctive therapy. It can therefore be assumed that the CBD treatment could be related to inhibition of the transition of the interictal to ictal state and/or to the improvement of EEG organization and brain function.

2020 ◽  
Vol 11 ◽  
Author(s):  
Johanna Wind ◽  
Fabian Horst ◽  
Nikolas Rizzi ◽  
Alexander John ◽  
Wolfgang I. Schöllhorn

Besides the pure pleasure of watching a dance performance, dance as a whole-body movement is becoming increasingly popular for health-related interventions. However, the science-based evidence for improvements in health or well-being through dance is still ambiguous and little is known about the underlying neurophysiological mechanisms. This may be partly related to the fact that previous studies mostly examined the neurophysiological effects of imagination and observation of dance rather than the physical execution itself. The objective of this pilot study was to investigate acute effects of a physically executed dance with its different components (recalling the choreography and physical activity to music) on the electrical brain activity and its functional connectivity using electroencephalographic (EEG) analysis. Eleven dance-inexperienced female participants first learned a Modern Jazz Dance (MJD) choreography over three weeks (1 h sessions per week). Afterwards, the acute effects on the EEG brain activity were compared between four different test conditions: physically executing the MJD choreography with music, physically executing the choreography without music, imaging the choreography with music, and imaging the choreography without music. Every participant passed each test condition in a randomized order within a single day. EEG rest-measurements were conducted before and after each test condition. Considering time effects the physically executed dance without music revealed in brain activity analysis most increases in alpha frequency and in functional connectivity analysis in all frequency bands. In comparison, physically executed dance with music as well as imagined dance with music led to fewer increases and imagined dance without music provoked noteworthy brain activity and connectivity decreases at all frequency bands. Differences between the test conditions were found in alpha and beta frequency between the physically executed dance and the imagined dance without music as well as between the physically executed dance with and without music in the alpha frequency. The study highlights different effects of a physically executed dance compared to an imagined dance on many brain areas for all measured frequency bands. These findings provide first insights into the still widely unexplored field of neurological effects of dance and encourages further research in this direction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hamid Arazi ◽  
Parvin Babaei ◽  
Makan Moghimi ◽  
Abbas Asadi

Abstract Background Regarding an important effects of physical exercise on brain function in elders, the aim of this study was to examine the effects of strength and endurance exercise on brain neurobiological factors in older men. Methods Thirty older men volunteered to participate in this study and were randomly assigned to strength, endurance and control groups. The subjects in strength group performed two circuits of resistance exercise (6 exercises with 10 repetition of 65–70% of one repetition maximum), while endurance group performed 30 min running with 65–70% of maximal heart rate. Blood was obtained pre and post-exercise to determine changes in serum BDNF, IGF-1 and platelets. Results After exercise, both the strength and endurance groups showed significant increases in serum BDNF and IGF-1 concentrations and platelets at post-exercise and in comparison to control group (p < 0.05). In addition, no statistically significant differences were detected between the strength and endurance groups at post-exercise. Conclusion Our findings indicate that both the strength and endurance interventions are effective in elevating BDNF, IGF-1, and platelets, without significant differences between them.


2021 ◽  
Author(s):  
Parikshat Sirpal ◽  
Rafat Damseh ◽  
Ke Peng ◽  
Dang Khoa Nguyen ◽  
Frédéric Lesage

AbstractIn this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.


2006 ◽  
Vol 28 (3) ◽  
pp. 247-261 ◽  
Author(s):  
Andrew A. Fingelkurts ◽  
Alexander A. Fingelkurts ◽  
Heikki Rytsälä ◽  
Kirsi Suominen ◽  
Erkki Isometsä ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Omar Singleton ◽  
Max Newlon ◽  
Andres Fossas ◽  
Beena Sharma ◽  
Susanne R. Cook-Greuter ◽  
...  

Jane Loevinger’s theory of adult development, termed ego development (1966) and more recently maturity development, provides a useful framework for understanding the development of the self throughout the lifespan. However, few studies have investigated its neural correlates. In the present study, we use structural and functional magnetic resonance imaging (MRI) to investigate the neural correlates of maturity development in contemplative practitioners and controls. Since traits possessed by individuals with higher levels of maturity development are similar to those attributed to individuals at advanced stages of contemplative practice, we chose to investigate levels of maturity development in meditation practitioners as well as matched controls. We used the Maturity Assessment Profile (MAP) to measure maturity development in a mixed sample of participants composed of 14 long-term meditators, 16 long-term yoga practitioners, and 16 demographically matched controls. We investigated the relationship between contemplative practice and maturity development with behavioral, seed-based resting state functional connectivity, and cortical thickness analyses. The results of this study indicate that contemplative practitioners possess higher maturity development compared to a matched control group, and in addition, maturity development correlates with cortical thickness in the posterior cingulate. Furthermore, we identify a brain network implicated in theory of mind, narrative, and self-referential processing, comprising the posterior cingulate cortex, dorsomedial prefrontal cortex, temporoparietal junction, and inferior frontal cortex, as a primary neural correlate.


2021 ◽  
Author(s):  
ATP Jäger ◽  
JM Huntenburg ◽  
SA Tremblay ◽  
U Schneider ◽  
S Grahl ◽  
...  

AbstractIn motor learning, sequence-specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific motor learning are less well understood. Previous research has established that plastic changes following motor learning can be divided into stages including fast learning, slow learning and retention. A description of how resting state functional connectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting an active group who learned a complex sequence with a control group who performed a control task matched for motor execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecutive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. Between-group interaction analyses showed sequence-specific increases in functional connectivity during fast learning in the sensorimotor territory of the internal segment of right globus pallidus (GPi), and sequence-specific decreases in right supplementary motor area (SMA) in overall learning. We found that connectivity changes in key regions of the motor network including the superior parietal cortex (SPC) and primary motor cortex (M1) were not a result of sequence-specific learning but were instead linked to motor execution. Our study confirms the sequence-specific role of SMA and GPi that has previously been identified in online task-based learning studies in humans and primates, and extends it to resting state network changes after sequence-specific MSL. Finally, our results shed light on a timing-specific plasticity mechanism between GPi and SMA following MSL.


2021 ◽  
Author(s):  
Hessam Ahmadi ◽  
Emad Fatemizadeh ◽  
Ali Motie Nasrabadi

Abstract Neuroimaging data analysis reveals the underlying interactions in the brain. It is essential, yet controversial, to choose a proper tool to manifest brain functional connectivity. In this regard, researchers have not reached a definitive conclusion between the linear and non-linear approaches, as both have pros and cons. In this study, to evaluate this concern, the functional Magnetic Resonance Imaging (fMRI) data of different stages of Alzheimer’s disease are investigated. In the linear approach, the Pearson Correlation Coefficient (PCC) is employed as a common technique to generate brain functional graphs. On the other hand, for non-linear approaches, two methods including Distance Correlation (DC) and the kernel trick are utilized. By the use of the three mentioned routines and graph theory, functional brain networks of all stages of Alzheimer’s disease (AD) are constructed and then sparsed. Afterwards, graph global measures are calculated over the networks and a non-parametric permutation test is conducted. Results reveal that the non-linear approaches have more potential to discriminate groups in all stages of AD. Moreover, the kernel trick method is more powerful in comparison to the DC technique. Nevertheless, AD degenerates the brain functional graphs more at the beginning stages of the disease. At the first phase, both functional integration and segregation of the brain degrades, and as AD progressed brain functional segregation further declines. The most distinguishable feature in all stages is the clustering coefficient that reflects brain functional segregation.


2020 ◽  
Author(s):  
Jacob Billings ◽  
Manish Saggar ◽  
Shella Keilholz ◽  
Giovanni Petri

Functional connectivity (FC) and its time-varying analogue (TVFC) leverage brain imaging data to interpret brain function as patterns of coordinating activity among brain regions. While many questions remain regarding the organizing principles through which brain function emerges from multi-regional interactions, advances in the mathematics of Topological Data Analysis (TDA) may provide new insights into the brain’s spontaneous self-organization. One tool from TDA, “persistent homology”, observes the occurrence and the persistence of n-dimensional holes presented in the metric space over a dataset. The occurrence of n-dimensional holes within the TVFC point cloud may denote conserved and preferred routes of information flow among brain regions. In the present study, we compare the use of persistence homology versus more traditional TVFC metrics at the task of segmenting brain states that differ across a common time-series of experimental conditions. We find that the structures identified by persistence homology more accurately segment the stimuli, more accurately segment volunteer performance during experimentally defined tasks, and generalize better across volunteers. Finally, we present empirical and theoretical observations that interpret brain function as a topological space defined by cyclic and interlinked motifs among distributed brain regions, especially, the attention networks.


Author(s):  
S. Vidhusha ◽  
A. Kavitha

Autism spectrum disorders are connected with disturbances of neural connectivity. Functional connectivity is typically examined during a cognitive task, but also exists in the absence of a task. While a number of studies have performed functional connectivity analysis to differentiate controls and autism individuals, this work focuses on analyzing the brain activation patterns not only between controls and autistic subjects, but also analyses the brain behaviour present within autism spectrum. This can bring out more intuitive ways to understand that autism individuals differ individually. This has been performed between autism group relative to the control group using inter-hemispherical analysis. Indications of under connectivity were exhibited by the Granger Causality (GC) and Conditional Granger Causality (CGC) in autistic group. Results show that as connectivity decreases, the GC and CGC values also get decreased. Further, to demark the differences present within the spectrum of autistic individuals, GC and CGC values have been calculated.


Sign in / Sign up

Export Citation Format

Share Document