scholarly journals Biologically Inspired Deep Learning Model for Efficient Foveal-Peripheral Vision

2021 ◽  
Vol 15 ◽  
Author(s):  
Hristofor Lukanov ◽  
Peter König ◽  
Gordon Pipa

While abundant in biology, foveated vision is nearly absent from computational models and especially deep learning architectures. Despite considerable hardware improvements, training deep neural networks still presents a challenge and constraints complexity of models. Here we propose an end-to-end neural model for foveal-peripheral vision, inspired by retino-cortical mapping in primates and humans. Our model has an efficient sampling technique for compressing the visual signal such that a small portion of the scene is perceived in high resolution while a large field of view is maintained in low resolution. An attention mechanism for performing “eye-movements” assists the agent in collecting detailed information incrementally from the observed scene. Our model achieves comparable results to a similar neural architecture trained on full-resolution data for image classification and outperforms it at video classification tasks. At the same time, because of the smaller size of its input, it can reduce computational effort tenfold and uses several times less memory. Moreover, we present an easy to implement bottom-up and top-down attention mechanism which relies on task-relevant features and is therefore a convenient byproduct of the main architecture. Apart from its computational efficiency, the presented work provides means for exploring active vision for agent training in simulated environments and anthropomorphic robotics.

2021 ◽  
Author(s):  
Zhaoyang Niu ◽  
Guoqiang Zhong ◽  
Hui Yu

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Daub ◽  
Jochen Kriegseis ◽  
Bettina Frohnapfel

AbstractTools for the numerical prediction of haemodynamics in multi-disciplinary integrated heart simulations have to be based on computational models that can be solved with low computational effort and still provide physiological flow characteristics. In this context the mitral valve model is important since it strongly influences the flow kinematics, especially during the diastolic phase. In contrast to a 3D valve, a vastly simplified valve model in form of a simple diode is known to be unable to reproduce the characteristic vortex formation and unable to promote a proper ventricular washout. In the present study, an adaptation of the widely used simplest modelling approach for the mitral valve is employed and compared to a physiologically inspired 3D valve within the same ventricular geometry. The adapted approach shows enhanced vortex formation and an improved ventricular washout in comparison to the diode type model. It further shows a high potential in reproducing the main flow characteristics and related particle residence times generated by a 3D valve.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5953 ◽  
Author(s):  
Parastoo Alinia ◽  
Ali Samadani ◽  
Mladen Milosevic ◽  
Hassan Ghasemzadeh ◽  
Saman Parvaneh

Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.


Sign in / Sign up

Export Citation Format

Share Document