scholarly journals High-Resolution Ultrasonography of the Superficial Peroneal Motor and Sural Sensory Nerves May Be a Non-invasive Approach to the Diagnosis of Vasculitic Neuropathy

2016 ◽  
Vol 7 ◽  
Author(s):  
Nurcan Üçeyler ◽  
Kristina A. Schäfer ◽  
Daniel Mackenrodt ◽  
Claudia Sommer ◽  
Wolfgang Müllges
2011 ◽  
Vol 122 (1-4) ◽  
pp. 26-39 ◽  
Author(s):  
Christina M. Haberer ◽  
Massimo Rolle ◽  
Sanheng Liu ◽  
Olaf A. Cirpka ◽  
Peter Grathwohl

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 664 ◽  
Author(s):  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Giuseppe Casula ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas

Three different non-invasive techniques, namely Structure from Motion (SfM) photogrammetry, Terrestrial Laser Scanner (TLS) and ultrasonic tomography integrated with petrographic data, were applied to characterize two rock samples of a different nature: A pyroclastic rock and a carbonate rock. We started a computation of high-resolution 3D models of the two samples using the TLS technique supported by a digital SfM photogrammetry survey. The resulting radiometric information available, such as reflectivity maps, SfM photogrammetry textured models and patterns of geometrical residuals, were interpreted in order to detect and underline surface materials anomalies by a comparison of reflectance and natural colour anomalies. Starting from the 3D models from previous techniques, a 3D ultrasonic tomography on each rock sample was accurately planned and carried out in order to detect internal defects or sample heterogeneity. The integration of the above three geophysical non-invasive techniques with petrographical data—especially with the textural characteristics of such materials—represents a powerful method for the definition of the heterogeneity of the rocks at a different scale and for calibrating in situ measurements.


2021 ◽  
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas ◽  
...  

<p>The diagnosis of the conservation state of monumental structures from constraints to the spatial distribution of their physical properties on shallow and inner materials represents one of the key objectives in the application of non-invasive techniques. <em>In situ</em>, CRP and 3D ultrasonic tomography can provide an effective coverage of stone materials in space and time. The intrinsic characteristics of the materials that make up a monumental structure and affect the two properties (i.e., reflectivity, longitudinal velocity) through the above methods substantially differ. Consequently, the content of their information is mainly complementary rather than redundant.</p><p>In this study we present the integrated application of different non-destructive techniques i.e., Close Range Photogrammetry (CRP), and low frequency (24 KHz) ultrasonic tomography complemented by petrographycal analysis based essentially on Optical Microscopy (OM). This integrated methodology has been applied to a Carrara marble column of the <em>Basilica of San Saturnino</em>, in Byzantine-Proto-Romanesque style, which is part of the Paleo Christian complex of the V-VI century. This complex also includes the adjacent Christian necropolis in the square of <em>San Cosimo</em> in the city of Cagliari, Sardinia, Italy. The column under study is made of bare material dating back probably to the first century A.D., it was subjected to various traumas due to disassembly and transport to the site, including damage caused by the close blast of a WWII fragmentation bomb.</p><p>High resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques such as CRP based on Structure from Motion (SfM), with which information about the geometrical anomalies and reflectivity of the investigated marble column surface was obtained. On the other hand, the inner parts of the studied body were successfully inspected in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials using 3D ultrasonic tomography. This technique gives information on the elastic properties of the material related with mechanical properties and a number of factors, such as presence of fractures, voids, and flaws. Extracting information on such factors from the elastic wave velocity using 3D tomography provides a non-invasive approach to analyse the property changes of the inner material of the ancient column. The integrated application of <em>in situ</em> CRP and ultrasonic techniques provides a full 3D high resolution model of the investigated artifact. This model enhanced by the knowledge of the petrographic characteristics of the materials, improves the diagnostic process and affords reliable information on the state of conservation of the materials used in the construction processes of the studied monumental structure. The integrated use of the non-destructive techniques described above also provides suitable data for a possible restoration and future preservation.</p><p><strong> </strong></p><p><strong>Acknowledgments: </strong>This work was partially supported by FIR (Fondi integrativi per la Ricerca) funded by the University of Cagliari (Italy). The authors would also like to thank the Ministero dei Beni e delle Attività Culturali. Polo Museale della Sardegna and Arch. Alessandro Sitzia for their kind permission to work on the <em>San Saturnino Basilica</em>.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Levente Kovács ◽  
Fruzsina Luca Kézér ◽  
Szilárd Bodó ◽  
Ferenc Ruff ◽  
Rupert Palme ◽  
...  

AbstractThe intensity and the magnitude of saliva cortisol responses were investigated during the first 48 h following birth in newborn dairy calves which underwent normal (eutocic, EUT, n = 88) and difficult (dystocic, DYS, n = 70) calvings. The effects of parity and body condition of the dam, the duration of parturition, the time spent licking the calf, the sex and birth weight of the calf were also analyzed. Neonatal salivary cortisol concentrations were influenced neither by factors related to the dam (parity, body condition) nor the calf (sex, birth weight). The duration of parturition and the time spent licking the calf also had no effect on salivary cortisol levels. Salivary cortisol concentrations increased rapidly after delivery in both groups to reach their peak levels at 45 and 60 min after delivery in EUT and DYS calves, respectively supporting that the birth process means considerable stress for calves and the immediate postnatal period also appears to be stressful for newborn calves. DYS calves exhibited higher salivary cortisol concentrations compared to EUT ones for 0 (P = 0.022), 15 (P = 0.016), 30 (P = 0.007), 45 (P = 0.003), 60 (P = 0.001) and 120 min (P = 0.001), and for 24 h (P = 0.040), respectively. Peak levels of salivary cortisol and the cortisol release into saliva calculated as AUC were higher in DYS than in EUT calves for the 48-h of the sampling period (P = 0.009 and P = 0.003, respectively). The greater magnitude of saliva cortisol levels in DYS calves compared to EUT ones suggest that difficult parturition means severe stress for bovine neonates and salivary cortisol could be an opportunity for non-invasive assessment of stress during the early neonatal period in cattle.


Author(s):  
Christine E Wamsley ◽  
Mikaela Kislevitz ◽  
Jennifer Barillas ◽  
Deniz Basci ◽  
Vishal Kandagatla ◽  
...  

Abstract Background While ablative techniques have been standard of care for the treatment of fine lines and wrinkles, microneedling is a minimally invasive alternative. Objectives The purpose of this study was to assess the efficacy of microneedling on facial and neck fine lines and wrinkles. Methods 35 subjects between 44 and 65 years old with Fitzpatrick skin types I-IV received four monthly microneedling treatments over the face and neck. Subjects returned one and three months post-treatment. At every visit, high-resolution ultrasonography, optical coherence tomography, transepidermal water loss and BTC-2000 were performed. 0.33mm microbiopsies were collected pre-treatment, before the fourth treatment and three months post-treatment. Results 32 subjects (93.75% female, 6.25% male) completed all seven visits. Facial dermal and epidermal density increased 101.86% and 19.28%, respectively from baseline at three months post-treatment. Facial elasticity increased 28.2% from baseline three months post-treatment. Facial attenuation coefficient increased 15.65% and 17.33% one and three months post-treatment. At study completion, blood flow 300µm deep decreased 25.8% in the face and 42.3% in the neck. Relative collagen type III and elastin gene expression was statistically higher three months post-treatment. However, total elastin protein levels unchanged compared to baseline. 58% of biopsies extracted three months post-treatment showed dermal muscle formation, compared to baseline 15.3%. Conclusions The results illustrate the effects of microneedling treatments. Non-invasive measurements and biopsy data showed changes in skin architecture and collagen/elastin gene expression suggesting skin rejuvenation, with new extracellular matrix production and muscle formation.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 683
Author(s):  
Matilde Lombardero ◽  
Mario López-Lombardero ◽  
Diana Alonso-Peñarando ◽  
María del Mar Yllera

The cat mandible is relatively small, and its manipulation implies the use of fixing methods and different repair techniques according to its small size to keep its biomechanical functionality intact. Attempts to fix dislocations of the temporomandibular joint should be primarily performed by non-invasive techniques (repositioning the bones and immobilisation), although when this is not possible, a surgical method should be used. Regarding mandibular fractures, these are usually concurrent with other traumatic injuries that, if serious, should be treated first. A non-invasive approach should also first be considered to fix mandibular fractures. When this is impractical, internal rigid fixation methods, such as osteosynthesis plates, should be used. However, it should be taken into account that in the cat mandible, dental roots and the mandibular canal structures occupy most of the volume of the mandibular body, a fact that makes it challenging to apply a plate with fixed screw positions without invading dental roots or neurovascular structures. Therefore, we propose a new prosthesis design that will provide acceptable rigid biomechanical stabilisation, but avoid dental root and neurovascular damage, when fixing simple mandibular body fractures. Future trends will include the use of better diagnostic imaging techniques, a patient-specific prosthesis design and the use of more biocompatible materials to minimise the patient’s recovery period and suffering.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexander Ziegler ◽  
Christina Sagorny

Abstract Background In zoology, species descriptions conventionally rely on invasive morphological techniques, frequently leading to damage of the specimens and thus only a partial understanding of their structural complexity. More recently, non-destructive imaging techniques have successfully been used to describe smaller fauna, but this approach has so far not been applied to identify or describe larger animal species. Here, we present a combination of entirely non-invasive as well as minimally invasive methods that permit taxonomic descriptions of large zoological specimens in a more comprehensive manner. Results Using the single available representative of an allegedly novel species of deep-sea cephalopod (Mollusca: Cephalopoda), digital photography, standardized external measurements, high-field magnetic resonance imaging, micro-computed tomography, and DNA barcoding were combined to gather all morphological and molecular characters relevant for a full species description. The results show that this specimen belongs to the cirrate octopod (Octopoda: Cirrata) genus Grimpoteuthis Robson, 1932. Based on the number of suckers, position of web nodules, cirrus length, presence of a radula, and various shell characters, the specimen is designated as the holotype of a new species of dumbo octopus, G. imperator sp. nov. The digital nature of the acquired data permits a seamless online deposition of raw as well as derived morphological and molecular datasets in publicly accessible repositories. Conclusions Using high-resolution, non-invasive imaging systems intended for the analysis of larger biological objects, all external as well as internal morphological character states relevant for the identification of a new megafaunal species were obtained. Potentially harmful effects on this unique deep-sea cephalopod specimen were avoided by scanning the fixed animal without admixture of a contrast agent. Additional support for the taxonomic placement of the new dumbo octopus species was obtained through DNA barcoding, further underlining the importance of combining morphological and molecular datasets for a holistic description of zoological specimens.


2004 ◽  
Vol 25 (4) ◽  
pp. 422 ◽  
Author(s):  
M. Todorovic-Tirnanic ◽  
V. Obradovic ◽  
N. Suvajdzic ◽  
I. Elezovic ◽  
M. Rolovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document