scholarly journals Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System

2019 ◽  
Vol 10 ◽  
Author(s):  
Bo Yang ◽  
Kevin L. Fritsche ◽  
David Q. Beversdorf ◽  
Zezong Gu ◽  
James C. Lee ◽  
...  
1983 ◽  
pp. 123-140 ◽  
Author(s):  
Nicolas G. Bazan ◽  
Susana G. Morelli de Liberti ◽  
Elena B. Rodriguez de Turco ◽  
Maria F. Pediconi

1981 ◽  
Vol 20 ◽  
pp. 523-529 ◽  
Author(s):  
Nicolás G. Bazán ◽  
Marta I. Aveldño de Caldironi ◽  
Elena B. Rodríguez de Turco

2020 ◽  
Vol 4 (35) ◽  
pp. 34-39
Author(s):  
I. Yu. Serikova ◽  
G. I. Shumacher ◽  
E. N. Vorobyova ◽  
I. A. Batanina ◽  
R. I. Vorobyov

The aim of this study is to identify clinical and biochemical predictors of neurological disorders in adolescents who have suffered mild perinatal damage of the central nervous system. We examined 120 adolescents (62 girls and 58 boys) aged 13–16 years, who were hospitalized in the city Children’s Neurological Department. It was found that adolescents with perinatal lesions of the central nervous system, activated lipid peroxidation processes and revealed an increase in the concentration of protein S 100, which in the future could lead to the development of neurodegeneration processes. In addition, a positive correlation between the lipid peroxidation processes nd the concentration of the nerve tissue damage marker was revealed. The results indicate that the level of neurospecific protein — protein S 100, parameters of the oxidant‑antioxidant system, perinatal factors can be used as predictors of chronic nervous tissue processes.


Author(s):  
Era Gorica ◽  
Vincenzo Calderone

: Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.


Sign in / Sign up

Export Citation Format

Share Document