scholarly journals The Role of Continuous Theta Burst TMS in the Neurorehabilitation of Subacute Stroke Patients: A Placebo-Controlled Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Dionísio ◽  
Rita Gouveia ◽  
João Castelhano ◽  
Isabel Catarina Duarte ◽  
Gustavo C. Santo ◽  
...  

Objectives: Transcranial magnetic stimulation, in particular continuous theta burst (cTBS), has been proposed for stroke rehabilitation, based on the concept that inhibition of the healthy hemisphere helps promote the recovery of the lesioned one. We aimed to study its effects on cortical excitability, oscillatory patterns, and motor function, the main aim being to identify potentially beneficial neurophysiological effects.Materials and Methods: We applied randomized real or placebo stimulation over the unaffected primary motor cortex of 10 subacute (7 ± 3 days) post-stroke patients. Neurophysiological measurements were performed using electroencephalography and electromyography. Motor function was assessed with the Wolf Motor Function Test. We performed a repeated measure study with the recordings taken pre-, post-cTBS, and at 3 months' follow-up.Results: We investigated changes in motor rhythms during arm elevation and thumb opposition tasks and found significant changes in beta power of the affected thumb's opposition, specifically after real cTBS. Our results are consistent with an excitatory response (increase in event-related desynchronization) in the sensorimotor cortical areas of the affected hemisphere, after stimulation. Neither peak-to-peak amplitude of motor-evoked potentials nor motor performance were significantly altered.Conclusions: Consistently with the theoretical prediction, this contralateral inhibitory stimulation paradigm changes neurophysiology, leading to a significant excitatory impact on the cortical oscillatory patterns of the contralateral hemisphere. These proof-of-concept results provide evidence for the potential role of continuous TBS in the neurorehabilitation of post-stroke patients. We suggest that these changes in ERS/ERD patterns should be further explored in future phase IIb/phase III clinical trials, in larger samples of poststroke patients.

BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e016566
Author(s):  
Eline C C van Lieshout ◽  
Johanna M A Visser-Meily ◽  
Sebastiaan F W Neggers ◽  
H Bart van der Worp ◽  
Rick M Dijkhuizen

IntroductionMany patients with stroke have moderate to severe long-term sensorimotor impairments, often including inability to execute movements of the affected arm or hand. Limited recovery from stroke may be partly caused by imbalanced interaction between the cerebral hemispheres, with reduced excitability of the ipsilesional motor cortex while excitability of the contralesional motor cortex is increased. Non-invasive brain stimulation with inhibitory repetitive transcranial magnetic stimulation (rTMS) of the contralesional hemisphere may aid in relieving a post-stroke interhemispheric excitability imbalance, which could improve functional recovery. There are encouraging effects of theta burst stimulation (TBS), a form of TMS, in patients with chronic stroke, but evidence on efficacy and long-term effects on arm function of contralesional TBS in patients with subacute hemiparetic stroke is lacking.Methods and analysisIn a randomised clinical trial, we will assign 60 patients with a first-ever ischaemic stroke in the previous 7–14 days and a persistent paresis of one arm to 10 sessions of real stimulation with TBS of the contralesional primary motor cortex or to sham stimulation over a period of 2 weeks. Both types of stimulation will be followed by upper limb training. A subset of patients will undergo five MRI sessions to assess post-stroke brain reorganisation. The primary outcome measure will be the upper limb function score, assessed from grasp, grip, pinch and gross movements in the action research arm test, measured at 3 months after stroke. Patients will be blinded to treatment allocation. The primary outcome at 3 months will also be assessed in a blinded fashion.Ethics and disseminationThe study has been approved by the Medical Research Ethics Committee of the University Medical Center Utrecht, The Netherlands. The results will be disseminated through (open access) peer-reviewed publications, networks of scientists, professionals and the public, and presented at conferences.Trial registration numberNTR6133


2020 ◽  
Vol 34 (5) ◽  
pp. 450-462 ◽  
Author(s):  
Chih-Wei Tang ◽  
Fu-Jung Hsiao ◽  
Po-Lei Lee ◽  
Yun-An Tsai ◽  
Ya-Fang Hsu ◽  
...  

Background. Recovery of upper limb function post-stroke can be partly predicted by initial motor function, but the mechanisms underpinning these improvements have yet to be determined. Here, we sought to identify neural correlates of post-stroke recovery using longitudinal magnetoencephalography (MEG) assessments in subacute stroke survivors. Methods. First-ever, subcortical ischemic stroke survivors with unilateral mild to moderate hand paresis were evaluated at 3, 5, and 12 weeks after stroke using a finger-lifting task in the MEG. Cortical activity patterns in the β-band (16-30 Hz) were compared with matched healthy controls. Results. All stroke survivors (n=22; 17 males) had improvements in action research arm test (ARAT) and Fugl-Meyer upper extremity (FM-UE) scores between 3 and 12 weeks. At 3 weeks post-stroke the peak amplitudes of the movement-related ipsilesional β-band event-related desynchronization (β-ERD) and synchronization (β-ERS) in primary motor cortex (M1) were significantly lower than the healthy controls (p<0.001) and were correlated with both the FM-UE and ARAT scores (r=0.51-0.69, p<0.017). The decreased β-ERS peak amplitudes were observed both in paretic and non-paretic hand movement particularly at 3 weeks post-stroke, suggesting a generalized disinhibition status. The peak amplitudes of ipsilesional β-ERS at week 3 post-stroke correlated with the FM-UE score at 12 weeks (r=0.54, p=0.03) but no longer significant when controlling for the FM-UE score at 3 weeks post-stroke. Conclusions. Although early β-band activity does not independently predict outcome at 3 months after stroke, it mirrors functional changes, giving a potential insight into the mechanisms underpinning recovery of motor function in subacute stroke.


2021 ◽  
Vol 11 (4) ◽  
pp. 1510
Author(s):  
Charles Morizio ◽  
Maxime Billot ◽  
Jean-Christophe Daviet ◽  
Stéphane Baudry ◽  
Christophe Barbanchon ◽  
...  

People who survive a stroke are often left with long-term neurologic deficits that induce, among other impairments, balance disorders. While virtual reality (VR) is growing in popularity for postural control rehabilitation in post-stroke patients, studies on the effect of challenging virtual environments, simulating common daily situations on postural control in post-stroke patients, are scarce. This study is a first step to document the postural response of stroke patients to different challenging virtual environments. Five subacute stroke patients and fifteen age-matched healthy adults were included. All participants underwent posturographic tests in control conditions (open and closed eyes) and virtual environment without (one static condition) and with avatars (four dynamic conditions) using a head-mounted device for VR. In dynamic environments, we modulated the density of the virtual crowd (dense and light crowd) and the avoidance space with the avatars (near or far). Center of pressure velocity was collected by trial throughout randomized 30-s periods. Results showed that more challenging conditions (dynamic condition) induced greater postural disturbances in stroke patients than in healthy counterparts. Our study suggests that virtual reality environments should be adjusted in light of obtaining more or less challenging conditions.


2016 ◽  
Vol 93 ◽  
pp. 140-142
Author(s):  
Weijia He ◽  
Suk-yin Stephanie Au-Yeung ◽  
Margaret Mak ◽  
Thomas Wai Hong Leung ◽  
Howan Leung ◽  
...  

2015 ◽  
Vol 37 (5) ◽  
pp. 434-440 ◽  
Author(s):  
Yanna Tong ◽  
Brian Forreider ◽  
Xinting Sun ◽  
Xiaokun Geng ◽  
Weidong Zhang ◽  
...  

2021 ◽  
Vol 101 ◽  
pp. 03023
Author(s):  
Tatiana Aleksandrovna Mardasova ◽  
Pavel Rafaelevich Iusupov

The relevance of the study of the neuropsychological rehabilitation of memory impairments in stroke and the increasing role of the development of the rehabilitation direction to build a competent management system for such patients suggests good conditions for improving the health of the population, increasing the life expectancy and social activity of people.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Caili Ren ◽  
Guofu Zhang ◽  
Xinlei Xu ◽  
Jianfeng Hao ◽  
Hui Fang ◽  
...  

Objective.To evaluate and compare the effects of repetitive transcranial magnetic stimulation (rTMS) over the right pars triangularis of the posterior inferior frontal gyrus (pIFG) and the right posterior superior temporal gyrus (pSMG) in global aphasia following subacute stroke.Methods.Fifty-four patients with subacute poststroke global aphasia were randomized to 15-day protocols of 20-minute inhibitory 1 Hz rTMS over either the right triangular part of the pIFG (the rTMS-b group) or the right pSTG (the rTMS-w group) or to sham stimulation, followed by 30 minutes of speech and language therapy. Language outcomes were assessed by aphasia quotient (AQ) scores obtained from the Chinese version of the Western Aphasia Battery (WAB) at baseline and immediately after 3 weeks (15 days) of experimental treatment.Results.Forty-five patients completed the entire study. The primary outcome measures include the changes in WAB-AQ score, spontaneous speech, auditory comprehension, and repetition. These measures indicated significant main effect between the baseline of the rTMS-w, rTMS-b, and sham groups and immediately after stimulation (P<0.05). Compared with the sham group, the increases were significant for auditory comprehension, repetition, and AQ in the rTMS-w group (P<0.05), whereas the changes in repetition, spontaneous speech, and AQ tended to be higher in the rTMS-b group (P<0.05).Conclusions.Inhibitory rTMS targeting the right pIFG and pSTG can be an effective treatment for subacute stroke patients with global aphasia. The effect of rTMS may depend on the stimulation site. Low-frequency rTMS inhibited the right pSTG and significantly improved language recovery in terms of auditory comprehension and repetition, whereas LF-rTMS inhibited the right pIFG, leading to apparent changes in spontaneous speech and repetition.


Sign in / Sign up

Export Citation Format

Share Document