scholarly journals Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans

Author(s):  
Joseph L. Sanguinetti ◽  
Stuart Hameroff ◽  
Ezra E. Smith ◽  
Tomokazu Sato ◽  
Chris M. W. Daft ◽  
...  
2015 ◽  
Vol 21 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Wen-Yih Isaac Tseng ◽  
Meng-Chuan Lai ◽  
Kayako Matsuo ◽  
Susan Shur-Fen Gau

AbstractThe frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7–14 years; mean 9.94±1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman’s rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners’ Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD. (JINS, 2015, 21, 271–284)


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Yang ◽  
Ya-jing Meng ◽  
Yu-jie Tao ◽  
Ren-hao Deng ◽  
Hui-yao Wang ◽  
...  

Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence.Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8).Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity.Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.


2020 ◽  
Author(s):  
Tianye Zhai ◽  
Betty Jo Salmeron ◽  
Hong Gu ◽  
Bryon Adinoff ◽  
Elliot A. Stein ◽  
...  

AbstractBackgroundRelapse is one of the most perplexing problems of addiction. The dorsolateral prefrontal cortex (DLPFC) is crucially involved in numerous cognitive and affective processes that are implicated in phenotypes of addiction, and is one of the most frequently reported brain regions with aberrant functionality in substance use disorders. However, the DLPFC is an anatomically large and functionally heterogeneous region, and the specific DLPFC-based circuits that contribute to drug relapse remain unknown.MethodsWe systematically investigated the relationship of cocaine relapse with 98 DLPFC functional circuits defined by evenly sampling the entire bilateral DLPFC in a cohort of cocaine dependent patients (n=43, 5F) following a psychosocial treatment intervention. A Cox regression model was utilized to predict relapse likelihood based on DLPFC functional connectivity strength.ResultsFunctional connectivity from 3 of the 98 DLPFC loci, one on the left and two on the right hemisphere, significantly predicted cocaine relapse with an accuracy of 83.9%, 84.7% and 85.4%, respectively. Combining all three significantly improved prediction validity to 87.5%. Protective and risk circuits related to these DLPFC loci were identified that are known to support “bottom up” drive to use drug and “top down” control over behavior together with social emotional, learning and memory processing.ConclusionThree DLPFC-centric circuits were identified that predict relapse to cocaine use with high accuracy. These functionally distinct DLPFC-based circuits provide insights into the multiple roles played by the DLPFC in cognitive and affective functioning that affects treatment outcome. The identified DLPFC loci may serve as potential neuromodulation targets for addiction treatment and as clinically relevant biomarkers of its efficacy.


Cephalalgia ◽  
2019 ◽  
Vol 39 (11) ◽  
pp. 1366-1381 ◽  
Author(s):  
Gina Dumkrieger ◽  
Catherine D Chong ◽  
Katherine Ross ◽  
Visar Berisha ◽  
Todd J Schwedt

Introduction Although migraine and persistent post-traumatic headache often share phenotypic characteristics, few studies have interrogated the pathophysiological differences underlying these headache types. While there is now some indication of differences in brain structure between migraine and persistent post-traumatic headache, differences in brain function have not been adequately investigated. The objective of this study was to compare static and dynamic functional connectivity patterns in migraine versus persistent post-traumatic headache using resting-state magnetic resonance imaging. Methods This case-control study interrogated the static functional connectivity and dynamic functional connectivity patterns of 59 a priori selected regions of interest involved in pain processing. Pairwise connectivity (region of interest to region of interest) differences between migraine (n = 33) and persistent post-traumatic headache (n = 44) were determined and compared to healthy controls (n = 36) with ANOVA and subsequent t-tests. Pearson partial correlations were used to explore the relationship between headache burden (headache frequency; years lived with headache) and functional connectivity and between pain intensity at the time of imaging and functional connectivity for migraine and persistent post-traumatic headache groups, separately. Results Significant differences in static functional connectivity between migraine and persistent post-traumatic headache were found for 17 region pairs that included the following regions of interest: Primary somatosensory, secondary somatosensory, posterior insula, hypothalamus, anterior cingulate, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, middle occipital, lingual gyrus, pulvinar, precuneus, cuneus, somatomotor, ventromedial prefrontal cortex, and dorsolateral prefrontal cortex. Significant differences in dynamic functional connectivity between migraine and persistent post-traumatic headache were found for 10 region pairs that included the following regions of interest: Secondary somatosensory, hypothalamus, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, lingual gyrus, somatomotor, precentral, posterior cingulate, middle frontal, fusiform gyrus, parieto-occiptal, and amygdala. Although there was overlap among the regions demonstrating static functional connectivity differences and those showing dynamic functional connectivity differences between persistent post-traumatic headache and migraine, there was no overlap in the region pair functional connections. After controlling for sex and age, there were significant correlations between years lived with headache with static functional connectivity of the right dorsolateral prefrontal cortex with the right ventromedial prefrontal cortex in the migraine group and with static functional connectivity of right primary somatosensory with left supramarginal gyrus in the persistent post-traumatic headache group. There were significant correlations between headache frequency with static functional connectivity of left secondary somatosensory with right cuneus in the migraine group and with static functional connectivity of left middle cingulate with right pulvinar and right posterior insula with left hypothalamus in the persistent post-traumatic headache group. Dynamic functional connectivity was significantly correlated with headache frequency, after controlling for sex and age, in the persistent post-traumatic headache group for one region pair (right middle cingulate with right supramarginal gyrus). Dynamic functional connectivity was correlated with pain intensity at the time of imaging for the migraine cohort for one region pair (right posterior cingulate with right amygdala). Conclusions Resting-state functional imaging revealed static functional connectivity and dynamic functional connectivity differences between migraine and persistent post-traumatic headache for regions involved in pain processing. These differences in functional connectivity might be indicative of distinctive pathophysiology associated with migraine versus persistent post-traumatic headache.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alfonso Barrós-Loscertales ◽  
Sergio Elías Hernández ◽  
Yaqiong Xiao ◽  
José Luis González-Mora ◽  
Katya Rubia

Neuroscience research has shown that meditation practices have effects on brain structure and function. However, few studies have combined information on the effects on structure and function in the same sample. Long-term daily meditation practice produces repeated activity of specific brain networks over years of practice, which may induce lasting structural and functional connectivity (FC) changes within relevant circuits. The aim of our study was therefore to identify differences in FC during the resting state between 23 Sahaja Yoga Meditation experts and 23 healthy participants without meditation experience. Seed-based FC analysis was performed departing from voxels that had shown structural differences between these same participants. The contrast of connectivity maps yielded that meditators showed increased FC between the left ventrolateral prefrontal cortex and the right dorsolateral prefrontal cortex but reduced FC between the left insula and the bilateral mid-cingulate as well as between the right angular gyrus and the bilateral precuneus/cuneus cortices. It thus appears that long-term meditation practice increases direct FC between ventral and dorsal frontal regions within brain networks related to attention and cognitive control and decreases FC between regions of these networks and areas of the default mode network.


2019 ◽  
Author(s):  
Bahar Moezzi ◽  
Louise M. Lavrencic ◽  
Mitchell R. Goldsworthy ◽  
Scott Coussens ◽  
Hannah A.D. Keage

AbstractCognitive reserve is a concept that explains individual differences in vulnerability to cognitive impairment due to age and dementia-related brain changes. Mechanisms underlying the cognitive reserve effect are poorly understood. We investigated associations between a comprehensive cognitive reserve proxy (Lifetime Experiences Questionnaire/LEQ) and functional connectivity of the prefrontal cortex across the whole scalp, covarying for the level of current cognitive functioning (Addenbrookes Cognitive Examination Revised/ACE-R), using multiblock parallel and orthogonalized partial least squares regression. EEG data were collected from 34 healthy older adults (63 to 83 years) in eyes-open and eyes-closed resting-states, and during 0-back and 1-back tasks. Functional connectivity was estimated using imaginary coherence in the theta and alpha frequency bands, as these bands have been heavily implicated in cognitive ageing, attention and executive function. We found three clusters of electrodes where the absolute values of the regression coefficient were above threshold when covarying for ACE-R: (1) a cluster approximating the right frontocentral region during the eyes-open condition in the theta band with seed electrodes approximating the left prefrontal cortex with positive associations of medium effect size; (2) a cluster approximating the right parietotemporal region during the 0-back task in the theta band with seed electrodes approximating the right prefrontal cortex with negative associations of medium to large effect sizes; and (3) a cluster approximating the occipitoparietal region in the eyes-closed condition in the alpha band with seed electrodes approximating the left prefrontal cortex with negative associations of medium effect size. These relationships between a cognitive reserve proxy and functional connectivity, within key networks and frequency bands associated with attention and executive function, may reflect greater neural capacity and efficiency.


2021 ◽  
Vol 7 (2) ◽  
pp. 124-140
Author(s):  
Shurui Xu ◽  
Qianqian Sun ◽  
Ming Li ◽  
Jia Luo ◽  
Guiyan Cai ◽  
...  

Objective: This study aims to determine the relationship between education level, memory function, and hippocampus functional and structural alterations in subjective cognitive decline (SCD). Methods: Seventy-five participants with SCD were divided into high education (HE) and low education (LE) level groups. A Wechsler Memory Scale–Chinese Revision test and functional and structural MRI were performed within 1 week after participant recruitment. The bilateral hippocampus resting-state functional connectivity (rsFC), gray matter volume (GMV) of brain regions identified by rsFC analysis, and moderating and mediating effects were assessed. Results: Compared with the LE group, HE individuals showed 1) higher memory quotient (MQ) and Digit Span subscore, 2) decreased hippocampal rsFC with the right medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC), and 3) increased GMV in the right mPFC and DLPFC. The bilateral hippocampus–right DLPFC rsFC significantly associated with the MQ and the bilateral hippocampus–right mPFCrsFC with the Digit Span subscore in each group. The bilateral hippocampus–right DLPFC rsFC moderated the relationship between the education level and MQ. The bilateral hippocampus–right mPFC rsFC mediated the relationship between the education level and Digit Span subscore in all subjects. Conclusion: The hippocampal rsFC with the right mPFC and DLPFC contributes to the education level effect on memory function in SCD.


2021 ◽  
Vol 11 (7) ◽  
pp. 909
Author(s):  
Thien Nguyen ◽  
Emma E. Condy ◽  
Soongho Park ◽  
Bruce H. Friedman ◽  
Amir Gandjbakhche

Inhibitory control is a cognitive process to suppress prepotent behavioral responses to stimuli. This study aimed to investigate prefrontal functional connectivity during a behavioral inhibition task and its correlation with the subject’s performance. Additionally, we identified connections that are specific to the Go/No-Go task. The experiment was performed on 42 normal, healthy adults who underwent a vanilla baseline and a simple and emotional Go/No-Go task. Cerebral hemodynamic responses were measured in the prefrontal cortex using a 16-channel near infrared spectroscopy (NIRS) device. Functional connectivity was calculated from NIRS signals and correlated to the Go/No-Go performance. Strong connectivity was found in both the tasks in the right hemisphere, inter-hemispherically, and the left medial prefrontal cortex. Better performance (fewer errors, faster response) is associated with stronger prefrontal connectivity during the simple Go/No-Go in both sexes and the emotional Go/No-Go connectivity in males. However, females express a lower emotional Go/No-Go connectivity while performing better on the task. This study reports a complete prefrontal network during a simple and emotional Go/No-Go and its correlation with the subject’s performance in females and males. The results can be applied to examine behavioral inhibitory control deficits in population with neurodevelopmental disorders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shin Ah Kim ◽  
Sang Hee Kim

In everyday life, individuals successively and simultaneously encounter multiple stimuli that are emotionally incongruent. Emotional incongruence elicited by preceding stimuli may alter emotional experience with ongoing stimuli. However, the underlying neural mechanisms of the modulatory influence of preceding emotional stimuli on subsequent emotional processing remain unclear. In this study, we examined self-reported and neural responses to negative and neutral pictures whose emotional valence was incongruent with that of preceding images of facial expressions. Twenty-five healthy participants performed an emotional intensity rating task inside a brain scanner. Pictures of negative and neutral scenes appeared, each of which was preceded by a pleasant, neutral, or unpleasant facial expression to elicit a degree of emotional incongruence. Behavioral results showed that emotional incongruence based on preceding facial expressions did not influence ratings of subsequent pictures’ emotional intensity. On the other hand, neuroimaging results revealed greater activation of the right dorsomedial prefrontal cortex (dmPFC) in response to pictures that were more emotionally incongruent with preceding facial expressions. The dmPFC had stronger functional connectivity with the right ventrolateral prefrontal cortex (vlPFC) during the presentation of negative pictures that followed pleasant facial expressions compared to those that followed unpleasant facial expressions. Interestingly, increased functional connectivity of the dmPFC was associated with the reduced modulatory influence of emotional incongruence on the experienced intensity of negative emotions. These results indicate that functional connectivity of the dmPFC contributes to the resolution of emotional incongruence, reducing the emotion modulation effect of preceding information on subsequent emotional processes.


Sign in / Sign up

Export Citation Format

Share Document