scholarly journals Muscle Synergies in Patients With Multiple Sclerosis Reveal Demand-Specific Alterations in the Modular Organization of Locomotion

2021 ◽  
Vol 14 ◽  
Author(s):  
Lars Janshen ◽  
Alessandro Santuz ◽  
Adamantios Arampatzis

For patients with multiple sclerosis (MS), deficits in gait significantly reduce the quality of life. Using the concept of muscle synergies, this study investigated the modular organization of motor control during level and inclined walking in MS patients (MSP) compared with healthy participants (HP) to identify the potential demand-specific adjustments in motor control in MSP. We hypothesized a widening of the time-dependent activation patterns (motor primitives) in MSP to increase the overlap of temporally-adjacent muscle synergies, especially during inclined walking, as a strategy to increase the robustness of motor control, thus compensating pathology-related deficits. We analyzed temporal gait parameters and muscle synergies from myoelectric signals of 13 ipsilateral leg muscles using non-negative matrix factorization. Compared with HP, MSP demonstrated a widening in the time-dependent coefficients (motor primitives), as well as altered relative muscle contribution (motor modules), in certain synergies during level and inclined walking. Moreover, inclined walking revealed a demand-specific adjustment in the modular organization in MSP, resulting in an extra synergy compared with HP. This further increased the overlap of temporally-adjacent muscle synergies to provide sufficient robustness in motor control to accomplish the more demanding motor task while coping with pathology-related motor deficits during walking.

2021 ◽  
Author(s):  
Alessandro Santuz ◽  
Lars Janshen ◽  
Leon Bruell ◽  
Victor Munoz-Martel ◽  
Juri Taborri ◽  
...  

There is increasing evidence that including sex as a biological variable is of crucial importance to promote rigorous, repeatable and reproducible science. In spite of this, the body of literature that accounts for the sex of participants in human locomotion studies is small and often produces controversial results. Here, we investigated the modular organization of muscle activation patterns for human locomotion using the concept of muscle synergies with a double purpose: i) uncover possible sex-specific characteristics of motor control and ii) assess whether these are maintained in older age. We recorded electromyographic activities from 13 ipsilateral muscles of the lower limb in young and older adults of both sexes walking (young and old) and running (young) on a treadmill. The data set obtained from the 215 participants was elaborated through non-negative matrix factorization to extract the time-independent (i.e., motor modules) and time-dependent (i.e., motor primitives) coefficients of muscle synergies. We found sparse sex-specific modulations of motor control. Motor modules showed a different contribution of hip extensors, knee extensors and foot dorsiflexors in various synergies. Motor primitives were wider (i.e., lasted longer) in males in the propulsion synergy for walking (but only in young and not in older adults) and in the weight acceptance synergy for running. Moreover, the complexity of motor primitives was similar in younger adults of both sexes, but lower in older females as compared to older males. In essence, our results revealed the existence of small but defined sex-specific differences in the way humans control locomotion and that these strategies are not entirely maintained in older age.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Juri Taborri ◽  
Valentina Agostini ◽  
Panagiotis K. Artemiadis ◽  
Marco Ghislieri ◽  
Daniel A. Jacobs ◽  
...  

In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes’ performance assessment or training guidelines in sports.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3311
Author(s):  
Riccardo Ballarini ◽  
Marco Ghislieri ◽  
Marco Knaflitz ◽  
Valentina Agostini

In motor control studies, the 90% thresholding of variance accounted for (VAF) is the classical way of selecting the number of muscle synergies expressed during a motor task. However, the adoption of an arbitrary cut-off has evident drawbacks. The aim of this work is to describe and validate an algorithm for choosing the optimal number of muscle synergies (ChoOSyn), which can overcome the limitations of VAF-based methods. The proposed algorithm is built considering the following principles: (1) muscle synergies should be highly consistent during the various motor task epochs (i.e., remaining stable in time), (2) muscle synergies should constitute a base with low intra-level similarity (i.e., to obtain information-rich synergies, avoiding redundancy). The algorithm performances were evaluated against traditional approaches (threshold-VAF at 90% and 95%, elbow-VAF and plateau-VAF), using both a simulated dataset and a real dataset of 20 subjects. The performance evaluation was carried out by analyzing muscle synergies extracted from surface electromyographic (sEMG) signals collected during walking tasks lasting 5 min. On the simulated dataset, ChoOSyn showed comparable performances compared to VAF-based methods, while, in the real dataset, it clearly outperformed the other methods, in terms of the fraction of correct classifications, mean error (ME), and root mean square error (RMSE). The proposed approach may be beneficial to standardize the selection of the number of muscle synergies between different research laboratories, independent of arbitrary thresholds.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhiguo Jiang ◽  
Xiao-Feng Wang ◽  
Guang H. Yue

The present study examined functional connectivity (FC) between functional MRI (fMRI) signals of the primary motor cortex (M1) and each of the three subcortical neural structures, cerebellum (CB), basal ganglia (BG), and thalamus (TL), during muscle fatigue using the quantile regression technique. Understanding activation relation between the subcortical structures and the M1 during prolonged motor performance should help delineate how central motor control network modulates acute perturbations at peripheral sensorimotor system such as muscle fatigue. Ten healthy subjects participated in the study and completed a 20-minute intermittent handgrip motor task at 50% of their maximal voluntary contraction (MVC) level. Quantile regression analyses were carried out to compare the FC between the contralateral (left) M1 and CB, BG, and TL in the minimal (beginning 100 s) versus significant (ending 100 s) fatigue stages. Widespread, statistically significant increases in FC were found in bilateral BG, CB, and TL with the left M1 during significant versus minimal fatigue stages. Our results imply that these subcortical nuclei are critical components in the motor control network and actively involved in modulating voluntary muscle fatigue, possibly, by working together with the M1 to strengthen the descending central command to prolong the motor performance.


2021 ◽  
pp. 154596832110654
Author(s):  
Erin M. Edwards ◽  
Nora E. Fritz ◽  
Amanda S. Therrien

Introduction. Cerebellar pathology is common among persons with multiple sclerosis (PwMS). The cerebellum is well recognized for its role in motor control and motor learning and cerebellar pathology in multiple sclerosis is associated with enhanced motor impairment and disability progression. The Problem. To mitigate motor disability progression, PwMS are commonly prescribed exercise and task-specific rehabilitation training. Yet, whether cerebellar dysfunction differentially affects rehabilitation outcomes in this population remains unknown. Furthermore, we lack rehabilitation interventions targeting cerebellar dysfunction. The Solution. Here, we summarize the current understanding of the impact of cerebellar dysfunction on motor control, motor training, and rehabilitation in persons with multiple sclerosis. Recommendations. Additionally, we highlight critical knowledge gaps and propose that these guide future research studying cerebellar dysfunction in persons with multiple sclerosis.


2014 ◽  
Vol 24 (6) ◽  
pp. 3511-3522
Author(s):  
María Viqueira Villarejo ◽  
Jose Maeso García ◽  
Begoña García Zapirain ◽  
Amaia Méndez Zorrilla

2017 ◽  
Author(s):  
Carly Demopoulos ◽  
Hardik Kothare ◽  
Danielle Mizuiri ◽  
Jennifer Henderson-Sabes ◽  
Brieana Fregeau ◽  
...  

AbstractSpeech and motor deficits are highly prevalent (>70%) in individuals with the 600 kb BP4-BP5 16p11.2 deletion; however, the mechanisms that drive these deficits are unclear, limiting our ability to target interventions and advance treatment. This study examined fundamental aspects of speech motor control in participants with the 16p11.2 deletion. To assess capacity for control of voice, we examined how accurately and quickly subjects changed the pitch of their voice within a trial to correct for a transient perturbation of the pitch of their auditory feedback. When compared to sibling controls, 16p11.2 deletion carriers show an over-exaggerated pitch compensation response to unpredictable mid-vocalization pitch perturbations. We also examined sensorimotor adaptation of speech by assessing how subjects learned to adapt their sustained productions of formants (speech spectral peak frequencies important for vowel identity), in response to consistent changes in their auditory feedback during vowel production. Deletion carriers show reduced sensorimotor adaptation to sustained vowel identity changes in auditory feedback. These results together suggest that 16p11.2 deletion carriers have fundamental impairments in the basic mechanisms of speech motor control and these impairments may partially explain the deficits in speech and language in these individuals.


Sign in / Sign up

Export Citation Format

Share Document