scholarly journals Directional Decoding From EEG in a Center-Out Motor Imagery Task With Visual and Vibrotactile Guidance

2021 ◽  
Vol 15 ◽  
Author(s):  
Lea Hehenberger ◽  
Luka Batistic ◽  
Andreea I. Sburlea ◽  
Gernot R. Müller-Putz

Motor imagery is a popular technique employed as a motor rehabilitation tool, or to control assistive devices to substitute lost motor function. In both said areas of application, artificial somatosensory input helps to mirror the sensorimotor loop by providing kinesthetic feedback or guidance in a more intuitive fashion than via visual input. In this work, we study directional and movement-related information in electroencephalographic signals acquired during a visually guided center-out motor imagery task in two conditions, i.e., with and without additional somatosensory input in the form of vibrotactile guidance. Imagined movements to the right and forward could be discriminated in low-frequency electroencephalographic amplitudes with group level peak accuracies of 70% with vibrotactile guidance, and 67% without vibrotactile guidance. The peak accuracies with and without vibrotactile guidance were not significantly different. Furthermore, the motor imagery could be classified against a resting baseline with group level accuracies between 76 and 83%, using either low-frequency amplitude features or μ and β power spectral features. On average, accuracies were higher with vibrotactile guidance, while this difference was only significant in the latter set of features. Our findings suggest that directional information in low-frequency electroencephalographic amplitudes is retained in the presence of vibrotactile guidance. Moreover, they hint at an enhancing effect on motor-related μ and β spectral features when vibrotactile guidance is provided.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Simone Rossi ◽  
Danilo Spada ◽  
Marco Emanuele ◽  
Monica Ulivelli ◽  
Emiliano Santarnecchi ◽  
...  

Transcranial magnetic stimulation was used to investigate corticospinal output changes in 10 professional piano players during motor imagery of triad chords in C major to be “mentally” performed with three fingers of the right hand (thumb, index, and little finger). Five triads were employed in the task; each composed by a stable 3rd interval (C4-E4) and a varying third note that could generate a 5th (G4), a 6th (A4), a 7th (B4), a 9th (D5), or a 10th (E5) interval. The 10th interval chord was thought to be impossible in actual execution for biomechanical reasons, as long as the thumb and the index finger remained fixed on the 3rd interval. Chords could be listened from loudspeakers, read on a staff, or listened and read at the same time while performing the imagery task. The corticospinal output progressively increased along with task demands in terms of mental representation of hand extension. The effects of audio, visual, or audiovisual musical stimuli were generally similar, unless motor imagery of kinetically impossible triads was required. A specific three-effector motor synergy was detected, governing the representation of the progressive mental extension of the hand. Results demonstrate that corticospinal facilitation in professional piano players can be modulated according to the motor plan, even if simply “dispatched” without actual execution. Moreover, specific muscle synergies, usually encoded in the motor cortex, emerge along the cross-modal elaboration of musical stimuli and in motor imagery of musical performances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dariusz Zapała ◽  
Paulina Iwanowicz ◽  
Piotr Francuz ◽  
Paweł Augustynowicz

AbstractRecent studies show that during a simple movement imagery task, the power of sensorimotor rhythms differs according to handedness. However, the effects of motor imagery perspectives on these differences have not been investigated yet. Our study aimed to check how handedness impacts the activity of alpha (8–13 Hz) and beta (15–30 Hz) oscillations during creating a kinesthetic (KMI) or visual-motor (VMI) representation of movement. Forty subjects (20 right-handed and 20 left-handed) who participated in the experiment were tasked with imagining sequential finger movement from a visual or kinesthetic perspective. Both the electroencephalographic (EEG) activity and behavioral correctness of the imagery task performance were measured. After the registration, we used independent component analysis (ICA) on EEG data to localize visual- and motor-related EEG sources of activity shared by both motor imagery conditions. Significant differences were obtained in the visual cortex (the occipital ICs cluster) and the right motor-related area (right parietal ICs cluster). In comparison to right-handers who, regardless of the task, demonstrated the same pattern in the visual area, left-handers obtained higher power in the alpha waves in the VMI task and better performance in this condition. On the other hand, only the right-handed showed different patterns in the alpha waves in the right motor cortex during the KMI condition. The results indicate that left-handers imagine movement differently than right-handers, focusing on visual experience. This provides new empirical evidence on the influence of movement preferences on imagery processes and has possible future implications for research in the area of neurorehabilitation and motor imagery-based brain–computer interfaces (MI-BCIs).


2020 ◽  
Author(s):  
Dariusz Zapała ◽  
Paulina Iwanowicz ◽  
Piotr Francuz ◽  
Paweł Augustynowicz

Abstract Recent studies show that during a simple movement imagery task, the power of sensorimotor rhythms differs according to handedness. However, the effects of motor imagery perspectives on these differences have not been investigated yet. Our study aimed to check how handedness impacts the activity of alpha (8 - 13 Hz) and beta (15 - 30 Hz) oscillations during creating a kinesthetic (KMI) or visual-motor (VMI) representation of movement. Forty subjects (20 right-handed and 20 left-handed) who participated in the experiment were tasked with imagining sequential finger movement from a visual or kinesthetic perspective. Both the electroencephalographic (EEG) activity and behavioral correctness of the imagery task performance were measured. After the registration, we used independent component analysis (ICA) on EEG data to localize visual- and motor-related EEG sources of activity shared by both motor imagery conditions. Significant differences were obtained in the visual cortex (the occipital ICs cluster) and the right motor-related area (right parietal ICs cluster). In comparison to right-handers who, regardless of the task, demonstrated the same pattern in the visual area, left-handers obtained higher power in the alpha waves in the VMI task and better performance in this condition. On the other hand, only the right-handed showed different patterns in the alpha waves in the right motor cortex during the KMI condition.The results indicate that left-handers imagine movement differently than right-handers, focusing on visual experience. This provides new empirical evidence on the influence of movement preferences on imagery processes and has possible future implications for research in the area of neurorehabilitation and motor imagery-based brain-computer interfaces (MI-BCIs).


1970 ◽  
Vol 13 (1) ◽  
pp. 37-40
Author(s):  
Gary Thompson ◽  
Marie Denman

Bone-conduction tests were administered to subjects who feigned a hearing loss in the right ear. The tests were conducted under two conditions: With and without occlusion of the non-test ear. It was anticipated that the occlusion effect, a well-known audiological principle, would operate to draw low frequency bone-conducted signals to the occluded side in a predictable manner. Results supported this expectation and are discussed in terms of their clinical implications.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


2017 ◽  
Vol 49 (3) ◽  
pp. 307
Author(s):  
Lanlan ZHANG ◽  
Cheng SHEN ◽  
Hua ZHU ◽  
Xuepei LI ◽  
Wen DAI ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Elena Laura Georgescu Margarint ◽  
Ioana Antoaneta Georgescu ◽  
Carmen Denise Mihaela Zahiu ◽  
Stefan-Alexandru Tirlea ◽  
Alexandru Rǎzvan Şteopoaie ◽  
...  

The execution of voluntary muscular activity is controlled by the primary motor cortex, together with the cerebellum and basal ganglia. The synchronization of neural activity in the intracortical network is crucial for the regulation of movements. In certain motor diseases, such as dystonia, this synchrony can be altered in any node of the cerebello-cortical network. Questions remain about how the cerebellum influences the motor cortex and interhemispheric communication. This research aims to study the interhemispheric cortical communication between the motor cortices during dystonia, a neurological movement syndrome consisting of sustained or repetitive involuntary muscle contractions. We pharmacologically induced lateralized dystonia to adult male albino mice by administering low doses of kainic acid on the left cerebellar hemisphere. Using electrocorticography and electromyography, we investigated the power spectral densities, cortico-muscular, and interhemispheric coherence between the right and left motor cortices, before and during dystonia, for five consecutive days. Mice displayed lateralized abnormal motor signs, a reduced general locomotor activity, and a high score of dystonia. The results showed a progressive interhemispheric coherence decrease in low-frequency bands (delta, theta, beta) during the first 3 days. The cortico-muscular coherence of the affected side had a significant increase in gamma bands on days 3 and 4. In conclusion, lateralized cerebellar dysfunction during dystonia was associated with a loss of connectivity in the motor cortices, suggesting a possible cortical compensation to the initial disturbances induced by cerebellar left hemisphere kainate activation by blocking the propagation of abnormal oscillations to the healthy hemisphere. However, the cerebellum is part of several overly complex circuits, therefore other mechanisms can still be involved in this phenomenon.


2021 ◽  
pp. 028418512110324
Author(s):  
Xiao-Dong Zhang ◽  
Jun Ke ◽  
Jing-Li Li ◽  
Yun-Yan Su ◽  
Jia-Min Zhou ◽  
...  

Background Sjögren’s syndrome (SjS) associated with systemic lupus erythematosus (SjS-SLE) was considered a standalone but often-overlooked entity. Purpose To assess altered spontaneous brain activity in SjS-SLE and SjS using amplitude of low-frequency fluctuation (ALFF). Material and Methods Sixteen patients with SjS-SLE, 17 patients with SjS, and 17 matched controls underwent neuropsychological tests and subsequent resting-state functional magnetic resonance imaging (fMRI) examinations. The ALFF value was calculated based on blood oxygen level dependent (BOLD) fMRI. Statistical parametric mapping was utilized to analyze between-group differences and multiple comparison was corrected with Analysis of Functional NeuroImages 3dClustSim. Then, the ALFFs of brain regions with significant differences among the three groups were correlated to corresponding clinical and neuropsychological variables by Pearson correlation. Results ALFF differences in the bilateral precuneus/posterior cingulate cortex (PCC), right parahippocampal gyrus/caudate/insula, and left insula were found among the three groups. Both SjS-SLE and SjS displayed decreased ALFF in the right parahippocampal gyrus, right insula, and left insula than HC. Moreover, SjS-SLE showed wider decreased ALFF in the bilateral precuneus and right caudate, while the SjS group exhibited increased ALFF in the bilateral PCC. Additionally, patients with SjS-SLE exhibited lower ALFF values in the bilateral PCC and precuneus than SjS. Moreover, ALFF values in the right parahippocampal gyrus and PCC were negatively correlated to fatigue score and disease duration, respectively, in SjS-SLE. Conclusion SjS-SLE and SjS exhibited common and different alteration of cerebral functional segregation revealed by AlFF analysis. This result appeared to indicate that SjS-SLE might be different from SjS with a neuroimaging standpoint.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Biggio ◽  
A. Bisio ◽  
F. Garbarini ◽  
Marco Bove

AbstractCircle-line drawing paradigm is used to study bimanual coupling. In the standard paradigm, subjects are asked to draw circles with one hand and lines with the other hand; the influence of the concomitant tasks results in two “elliptical” figures. Here we tested whether proprioceptive information evoked by muscle vibration inducing a proprioceptive illusion (PI) of movement at central level, was able to affect the contralateral hand drawing circles or lines. A multisite 80 Hz-muscle vibration paradigm was used to induce the illusion of circle- and line-drawing on the right hand of 15 healthy participants. During muscle vibration, subjects had to draw a congruent or an incongruent figure with the left hand. The ovalization induced by PI was compared with Real and Motor Imagery conditions, which already have proved to induce bimanual coupling. We showed that the ovalization of a perceived circle over a line drawing during PI was comparable to that observed in Real and Motor Imagery condition. This finding indicates that PI can induce bimanual coupling, and proprioceptive information can influence the motor programs of the contralateral hand.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Persona Paolo ◽  
Valeri Ilaria ◽  
Zarantonello Francesco ◽  
Forin Edoardo ◽  
Sella Nicolò ◽  
...  

Abstract Background During COVID-19 pandemic, optimization of the diagnostic resources is essential. Lung Ultrasound (LUS) is a rapid, easy-to-perform, low cost tool which allows bedside investigation of patients with COVID-19 pneumonia. We aimed to investigate the typical ultrasound patterns of COVID-19 pneumonia and their evolution at different stages of the disease. Methods We performed LUS in twenty-eight consecutive COVID-19 patients at both admission to and discharge from one of the Padua University Hospital Intensive Care Units (ICU). LUS was performed using a low frequency probe on six different areas per each hemithorax. A specific pattern for each area was assigned, depending on the prevalence of A-lines (A), non-coalescent B-lines (B1), coalescent B-lines (B2), consolidations (C). A LUS score (LUSS) was calculated after assigning to each area a defined pattern. Results Out of 28 patients, 18 survived, were stabilized and then referred to other units. The prevalence of C pattern was 58.9% on admission and 61.3% at discharge. Type B2 (19.3%) and B1 (6.5%) patterns were found in 25.8% of the videos recorded on admission and 27.1% (17.3% B2; 9.8% B1) on discharge. The A pattern was prevalent in the anterosuperior regions and was present in 15.2% of videos on admission and 11.6% at discharge. The median LUSS on admission was 27.5 [21–32.25], while on discharge was 31 [17.5–32.75] and 30.5 [27–32.75] in respectively survived and non-survived patients. On admission the median LUSS was equally distributed on the right hemithorax (13; 10.75–16) and the left hemithorax (15; 10.75–17). Conclusions LUS collected in COVID-19 patients with acute respiratory failure at ICU admission and discharge appears to be characterized by predominantly lateral and posterior non-translobar C pattern and B2 pattern. The calculated LUSS remained elevated at discharge without significant difference from admission in both groups of survived and non-survived patients.


Sign in / Sign up

Export Citation Format

Share Document