scholarly journals Music Augmented With Isochronic Auditory Beats or Vibrotactile Stimulation Does Not Affect Subsequent Ergometer Cycling Performance: A Pilot Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Adam Fry ◽  
Stephen Braren ◽  
Nicholas Pitaro ◽  
Brandon Larson ◽  
David Putrino

Methods to enhance the ergogenic effects of music are of interest to athletes of all abilities. The aim of this pilot study was to investigate the ergogenic effects of two commercially available methods of music augmentation: auditory beats and vibrotactile stimulation. Six male and five female cyclists/triathletes cycled for 7 minutes at three different intensities: a rate of perceived exertion (RPE) of 11 (“light”), RPE of 15 (“hard”), and a 7-minute time-trial. Before each 7-minute bout of cycling, participants listened to 10 minutes of self-selected music (MUS), or the same music with the addition of either isochronic auditory beats (ABS) or vibrotactile stimulation via SUBPACTM (VIB). MUS, ABS and VIB trials were performed in a randomized order. Power output was measured during cycling and felt arousal and feeling scores were recorded at timepoints throughout the protocol. The results found the augmented MUS interventions did not influence power output with no significant main effect of trial (p = 0.44, η2 = 0.09) or trial × cycling intensity interaction (p = 0.11, η2 = 0.20). Similarly, both felt arousal and feeling scores were unchanged between the MUS, ABS, and VIB trials (p > 0.05). In conclusion, this pilot study indicated an ineffectiveness of the ABS and VIB to affect subsequent 7-min cycling performance compared to self-selected MUS alone.

2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


Author(s):  
Paul W. Macdermid ◽  
Stephen Stannard ◽  
Dean Rankin ◽  
David Shillington

Purpose:To determine beneficial effects of short-term galactose (GAL) supplementation over a 50:50 glucose–maltodextrin (GLUC) equivalent on self-paced endurance cycling performance.Methods:On 2 separate occasions, subjects performed a 100-km self-paced time trial (randomized and balanced order). This was interspersed with four 1-km and four 4-km maximal efforts reflecting the physical requirements of racing. Before each trial 38 ± 3 g of GAL or GLUC was ingested in a 6% concentrate fluid form 1 hr preexercise and then during exercise at a rate of 37 ± 3 g/hr. Performance variables were recorded for all 1- and 4-km efforts, all interspersed intervals, and the total 100-km distance. Noninvasive indicators of work intensity (heart rate [HR] and rating of perceived exertion) were also recorded.Results:Times taken to complete the 100-km performance trial were 8,298 ± 502 and 8,509 ± 578 s (p = .132), with mean power outputs of 271 ± 37 and 256 ± 45 W (p = .200), for GAL and GLUC, respectively. Mean HR did not differ (GAL 157 ± 7 and GLUC 157 ± 7 beats/min, p = .886). A main effect of carbohydrate (CHO) type on time to complete 4-km efforts occurred, with no CHO Type × Effort Order interaction observed. No main effect of CHO type or interaction of CHO Type × Sequential Order occurred for 1-km efforts.Conclusion:A 6% GAL drink does not enhance performance time during a self-paced cycling performance trial in highly trained endurance cyclists compared with a formula typically used by endurance athletes but may improve the ability to produce intermediate self-paced efforts.


2014 ◽  
Vol 9 (4) ◽  
pp. 610-614 ◽  
Author(s):  
Robert P. Lamberts

In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO2max). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97–.98, P < .0001), VO2max (r = .96, 95%CI: .97–.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94–.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.


2015 ◽  
Vol 10 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Martin J. Barwood ◽  
Jo Corbett ◽  
Christopher R.D. Wagstaff ◽  
Dan McVeigh ◽  
Richard C. Thelwell

Purpose:Unpleasant physical sensations during maximal exercise may manifest themselves as negative cognitions that impair performance, alter pacing, and are linked to increased rating of perceived exertion (RPE). This study examined whether motivational self-talk (M-ST) could reduce RPE and change pacing strategy, thereby enhancing 10-km time-trial (TT) cycling performance in contrast to neutral self-talk (N-ST).Methods:Fourteen men undertook 4 TTs, TT1–TT4. After TT2, participants were matched into groups based on TT2 completion time and underwent M-ST (n = 7) or N-ST (n = 7) after TT3. Performance, power output, RPE, and oxygen uptake (VO2) were compared across 1-km segments using ANOVA. Confidence intervals (95%CI) were calculated for performance data.Results:After TT3 (ie, before intervention), completion times were not different between groups (M-ST, 1120 ± 113 s; N-ST, 1150 ± 110 s). After M-ST, TT4 completion time was faster (1078 ± 96 s); the N-ST remained similar (1165 ± 111 s). The M-ST group achieved this through a higher power output and VO2 in TT4 (6th–10th km). RPE was unchanged. CI data indicated the likely true performance effect lay between 13- and 71-s improvement (TT4 vs TT3).Conclusion:M-ST improved endurance performance and enabled a higher power output, whereas N-ST induced no change. The VO2 response matched the increase in power output, yet RPE was unchanged, thereby inferring a perceptual benefit through M-ST. The valence and content of self-talk are important determinants of the efficacy of this intervention. These findings are primarily discussed in the context of the psychobiological model of pacing.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2006 ◽  
Vol 100 (1) ◽  
pp. 194-202 ◽  
Author(s):  
L. Havemann ◽  
S. J. West ◽  
J. H. Goedecke ◽  
I. A. Macdonald ◽  
A. St Clair Gibson ◽  
...  

The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8–10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest ( P < 0.005) and during exercise ( P < 0.01) and increased plasma free fatty acid levels ( P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO ( P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower ( P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2017 ◽  
Vol 23 (4) ◽  
pp. 231-238 ◽  
Author(s):  
Cayque Brietzke ◽  
Ricardo Yukio Asano ◽  
Felipe De Russi de Lima ◽  
Fabiano Aparecido Pinheiro ◽  
Franco-Alvarenga ◽  
...  

Background: Ergogenic effects of caffeine (CAF) ingestion have been observed in different cycling exercise modes, and have been associated with alterations in ratings of perceived exertion (RPE). However, there has been little investigation of maximal oxygen uptake (VO2MAX) test outcomes. Aim: This study aimed to verify whether CAF may reduce RPE, thereby improving maximal incremental test (MIT) outcomes such as VO2MAX, time to exhaustion and peak power output (WPEAK). Methods: Nine healthy individuals performed three MITs (25 W/min until exhaustion) in a random, counterbalanced fashion after ingestion of CAF, placebo perceived as caffeine (PLA), and no supplementation (baseline control). VO2 was measured throughout the test, while RPE was rated according to overall and leg effort sensations. The power output corresponding to submaximal (RPE = 14 according to the 6–20 Borg scale) and maximal RPE was recorded for both overall (O-RPE14 and O-RPEMAX) and leg RPE (L-RPE14 and L-RPEMAX). Results: VO2MAX did not change significantly between MITs; however, CAF and PLA increased time to exhaustion (↑ ∼18.7% and ∼17.1%, respectively; p < .05) and WPEAK (↑ ∼13.0% and ∼11.8%, respectively; p < .05) when compared with control. When compared with control, CAF ingestion reduced submaximal and maximal overall and leg RPEs, the effect being greater in maximal (likely beneficial in O-RPEMAX and L-RPEMAX) than submaximal RPE (possibly beneficial in O-RPE14 and L-RPE14). Similar results were found when participants ingested PLA. Conclusions: Compared with control, CAF and PLA improved MIT performance outcomes such as time to exhaustion and WPEAK, without altering VO2MAX values. CAF effects were attributed to placebo.


2014 ◽  
Vol 9 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Gregory T. Levin ◽  
Paul B. Laursen ◽  
Chris R. Abbiss

Purpose:To assess the reliability of a 5-min-stage graded exercise test (GXT) and determine the association between physiological attributes and performance over stochastic cycling trials of varying distance.Methods:Twenty-eight well-trained male cyclists performed 2 GXTs and either a 30-km (n = 17) or a 100-km stochastic cycling time trial (n = 9). Stochastic cycling trials included periods of high-intensity efforts for durations of 250 m, 1 km, or 4 km depending on the test being performing.Results:Maximal physiological attributes were found to be extremely reliable (maximal oxygen uptake [VO2max]: coefficient of variation [CV] 3.0%, intraclass correlation coefficient [ICC] .911; peak power output [PPO]: CV 3.0%, ICC .913), but a greater variability was found in ventilatory thresholds and economy. All physiological variables measured during the GXT, except economy at 200 W, were correlated with 30-km cycling performance. Power output during the 250-m and 1-km efforts of the 30-km trial were correlated with VO2max, PPO, and the power output at the second ventilatory threshold (r = .58–.82). PPO was the only physiological attributed measured during the GXT to be correlated with performance during the 100-km cycling trial (r = .64).Conclusions:Many physiological variables from a reliable GXT were associated with performance over shorter (30-km) but not longer (100-km) stochastic cycling trials.


Sign in / Sign up

Export Citation Format

Share Document