scholarly journals Enriched Environmental Conditions Modify the Gut Microbiome Composition and Fecal Markers of Inflammation in Parkinson’s Disease

2019 ◽  
Vol 13 ◽  
Author(s):  
Yogesh Singh ◽  
Mohamed El-Hadidi ◽  
Jakob Admard ◽  
Zinah Wassouf ◽  
Julia M. Schulze-Hentrich ◽  
...  
2019 ◽  
Author(s):  
Yogesh Singh ◽  
Mohamed El Hadidi ◽  
Jakob Matthes ◽  
Zinah Wassouf ◽  
Julia M. Schulze-Hentrich ◽  
...  

AbstractBackgroundRecent findings suggest an implication of the gut microbiome in Parkinson’s disease patients. Parkinson’s disease onset and progression has also been linked with various environmental factors such as physical activity, exposure to pesticides, head injury, nicotine, and dietary factors.ObjectivesIn this study, we used a transgenic mouse model overexpressing the complete human SNCA genes modeling familial and sporadic forms of Parkinson’s disease to study whether environmental conditions such as standard versus enriched environment changes the gut microbiome and influences disease progression.MethodsWe performed 16S rRNA DNA sequencing on fecal samples for microbiome analysis and studied fecal inflammatory calprotectin from the colon of control and transgenic mice kept under standard environment and enriched environment conditions.ResultsThe overall composition of the gut microbiota was not changed in transgenic mice compared with wild-type in enriched environment, however, individual gut bacteria at genus level such as Lactobacillus sp. were significantly changed in transgenic mice. Furthermore, enriched environment significantly reduced colon fecal inflammatory calprotectin protein in wild-type and transgenic enriched environment conditions compared to standard environment.ConclusionOur data suggest that enriched social environment has a positive effect on the induction of SNCA mediated inflammation in the intestine by changing anti-inflammatory gut bacteria.


2019 ◽  
Author(s):  
Sebastian Heinzel ◽  
Velma T. E. Aho ◽  
Ulrike Suenkel ◽  
Anna-Katharina von Thaler ◽  
Claudia Schulte ◽  
...  

AbstractObjectivesAlterations of the gut microbiome in Parkinson’s disease (PD) have been repeatedly demonstrated. However, little is known about whether such alterations precede disease onset and how they may be related to risk and prodromal markers of PD. We investigated associations of these features with gut microbiome composition.MethodsEstablished risk and prodromal markers of PD as well as factors related to diet/lifestyle, bowel function and medication were studied in relation to bacterial α-/β-diversity, enterotypes, and taxonomic composition in stool samples of 666 elderly TREND study participants.ResultsAmong risk and prodromal markers, physical inactivity, constipation and age showed associations with α- and β-diversity, and for both measures subthreshold parkinsonism and physical inactivity showed interaction effects. Moreover, male sex, possible REM-sleep behavior disorder (RBD), smoking as well as body-mass-index, antidiabetic and urate-lowering medication were associated with β-diversity. Physical inactivity and constipation severity were increased in individuals with the Firmicutes-enriched enterotype. Subthreshold parkinsonism was least frequently observed in individuals with the Prevotella-enriched enterotype. Differentially abundant taxa were linked to constipation, physical inactivity, possible RBD, and subthreshold parkinsonism. Substantia nigra hyperechogenicity, olfactory loss, depression, orthostatic hypotension, urinary/erectile dysfunction, PD family history and the overall prodromal PD probability showed no significant microbiome associations.InterpretationSeveral risk and prodromal markers of PD are associated with changes in gut microbiome composition. However, the impact of the gut microbiome on PD risk and potential microbiome-dependent subtypes in the prodrome of PD need further investigation based on prospective clinical and (multi)omics data in incident PD cases.


2019 ◽  
Author(s):  
Federico Baldini ◽  
Johannes Hertel ◽  
Estelle Sandt ◽  
Cyrille C. Thinnes ◽  
Lorieza Neuberger-Castillo ◽  
...  

ABSTRACTParkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their functional consequences remain unclear. Herein, we first analysed the gut microbiome of patients and healthy controls by 16S rRNA gene sequencing of stool samples from the Luxembourg Parkinson’s study (n=147 typical PD cases, n=162 controls). All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological tests followed by self-reporting questionnaires. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results include: 1. eight genera and nine species changed significantly in their relative abundances between PD patients and healthy controls. 2. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation. The relative abundances ofBilophilaandParaprevotellawere significantly associated with the Hoehn and Yahr staging after controlling for the disease duration. In contrast, dopaminergic medication had no detectable effect on the PD microbiome composition. 3. Personalised metabolic modelling of the gut microbiomes revealed PD-associated metabolic patterns in secretion potential of nine microbial metabolites in PD, including increased methionine and cysteinylglycine. The microbial pantothenic acid production potential was linked to the presence of specific non-motor symptoms and attributed to individual bacteria, such asAkkermansia muciniphilaandBilophila wardswarthia. Our results suggest that PD-associated alterations of gut microbiome could translate into functional differences affecting host metabolism and disease phenotype.


2022 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Brian Bicknell ◽  
Ann Liebert ◽  
Craig S. McLachlan ◽  
Hosen Kiat

There is a paucity of information on the effect of photobiomodulation therapy on gut microbiome composition. Parkinson’s disease is a progressive neurological disorder with few management options, although the gut microbiome has been suggested as a potential avenue of treatment. We retrospectively analysed the microbiome from human stool samples from a previously published study, which had demonstrated the efficacy of photobiomodulation to treat Parkinson’s patients’ symptoms. Specifically, we have observed changes in the microbiome of Parkinson’s patients after a 12-week treatment regimen with photobiomodulation to the abdomen, neck, head and nose. Noted were positive changes in the Firmicutes to Bacteroidetes (F:B) ratio, which is often interpreted as a proxy for gut health.


2021 ◽  
Author(s):  
Sebastian Heinzel ◽  
Velma T. E. Aho ◽  
Ulrike Suenkel ◽  
Anna‐Katharina Thaler ◽  
Claudia Schulte ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


Author(s):  
Michal Lubomski ◽  
Xiangnan Xu ◽  
Andrew J. Holmes ◽  
Jean Y. H. Yang ◽  
Carolyn M. Sue ◽  
...  

2021 ◽  
Author(s):  
Aoji Xie ◽  
Elizabeth Ensink ◽  
Peipei Li ◽  
Juozas Gordevicius ◽  
Lee L. Marshall ◽  
...  

Background The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. Here, we investigate whether the changes in the gut microbiome and associated metabolites are linked to PD symptoms and epigenetic markers in leucocytes and neurons. Methods Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified the genome-wide DNA methylation by targeted bisulfite sequencing. Results We show that lower fecal butyrate and reduced Roseburia, Romboutsia, and Prevotella counts are linked to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA (mDNA) regions in PD overlap with those altered in gastrointestinal, autoimmune, and psychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document