scholarly journals Recording of Electrically Evoked Neural Activity and Bladder Pressure Responses in Awake Rats Chronically Implanted With a Pelvic Nerve Array

2020 ◽  
Vol 14 ◽  
Author(s):  
Sophie C. Payne ◽  
Nicole M. Wiedmann ◽  
Calvin D. Eiber ◽  
Agnes W. Wong ◽  
Philipp Senn ◽  
...  

Bioelectronic medical devices are well established and widely used in the treatment of urological dysfunction. Approved targets include the sacral S3 spinal root and posterior tibial nerve, but an alternate target is the group of pelvic splanchnic nerves, as these contain sacral visceral sensory and autonomic motor pathways that coordinate storage and voiding functions of the bladder. Here, we developed a device suitable for long-term use in an awake rat model to study electrical neuromodulation of the pelvic nerve (homolog of the human pelvic splanchnic nerves). In male Sprague-Dawley rats, custom planar four-electrode arrays were implanted over the distal end of the pelvic nerve, close to the major pelvic ganglion. Electrically evoked compound action potentials (ECAPs) were reliably detected under anesthesia and in chronically implanted, awake rats up to 8 weeks post-surgery. ECAP waveforms showed three peaks, with latencies that suggested electrical stimulation activated several subpopulations of myelinated A-fiber and unmyelinated C-fiber axons. Chronic implantation of the array did not impact on voiding evoked in awake rats by continuous cystometry, where void parameters were comparable to those published in naïve rats. Electrical stimulation with chronically implanted arrays also induced two classes of bladder pressure responses detected by continuous flow cystometry in awake rats: voiding contractions and non-voiding contractions. No evidence of tissue pathology produced by chronically implanted arrays was detected by immunohistochemical visualization of markers for neuronal injury or noxious spinal cord activation. These results demonstrate a rat pelvic nerve electrode array that can be used for preclinical development of closed loop neuromodulation devices targeting the pelvic nerve as a therapy for neuro-urological dysfunction.

2010 ◽  
Vol 76 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Petros Mirilas ◽  
John E. Skandalakis

We present surgicoanatomical topographic relations of nerves and plexuses in the retroperitoneal space: 1) six named parietal nerves, branches of the lumbar plexus: iliohypogastric, ilioinguinal, genitofemoral, lateral femoral cutaneous, obturator, femoral. 2) The sacral plexus is formed by the lumbosacral trunk, ventral rami of S1–S3, and part of S4; the remainder of S4 joining the coccygeal plexus. From this plexus originate the superior gluteal nerve, which passes backward through the greater sciatic foramen above the piriformis muscle; the inferior gluteal nerve also courses through the greater sciatic foramen, but below the piriformis; 3) sympathetic trunks: right and left lumbar sympathetic trunks, which comprise four interconnected ganglia, and the pelvic chains; 4) greater, lesser, and least thoracic splanchnic nerves (sympathetic), which pass the diaphragm and join celiac ganglia; 5) four lumbar splanchnic nerves (sympathetic), which arise from lumbar sympathetic ganglia; 6) pelvic splanchnic nerves (nervi erigentes), providing parasympathetic innervation to the descending colon and pelvic splanchna; and 7) autonomic (prevertebral) plexuses, formed by the vagus nerves, splanchnic nerves, and ganglia (celiac, superior mesenteric, aorticorenal). They include sympathetic, parasympathetic, and sensory (mainly pain) fibers. The autonomic plexuses comprise named parts: aortic, superior mesenteric, inferior mesenteric, superior hypogastric, and inferior hypogastric (hypogastric nerves).


1956 ◽  
Vol 184 (2) ◽  
pp. 418-427 ◽  
Author(s):  
Anthony M. Imparato ◽  
L. Corsan Reid ◽  
J. William Hinton

Gastric secretion in response to insulin hypoglycemia and electrical stimulation of the vagus was studied in 18 dogs who had bilateral vagosplanchnic anastomoses in the chest. In six dogs the pattern of gastric secretory response to insulin changed from negative in the early postoperative period to positive between 85 and 613 days postanastomosis. In two, apparent return of vagus function was confirmed by electrical stimulation of the vagi. One of five dogs in whom splanchnovagal nerve anastomoses were performed showed a return of response to insulin at 63 days which was abolished by excision of the anastomoses. On the basis of a review of some of the ideas regarding interpretation of cross nerve anastomoses and some of the conflicting opinions regarding the fiber content of the sympathetic splanchnic nerves, the authors conclude the most likely explanation for the observed phenomena is that there are preganglionic cholinergic fibers in the greater splanchnic nerves whose relationship to the gastric secretory apparatus is similar to that of cholinergic fibers in the vagus. The regenerating fibers of the vagus followed the sheaths of these degenerating fibers and re-established functional relationship with the gastric secretory apparatus.


1996 ◽  
Vol 271 (6) ◽  
pp. R1481-R1488
Author(s):  
K. Kihara ◽  
H. Kakizaki ◽  
W. C. de Groat

Reorganization of autonomic efferent pathways to the rat vas deferens was noted after chronic (30 days) sympathetic decentralization produced by hypogastric nerve (HGN) transection. In normal rats, electrical stimulation of the HGN elicited an increase in vasal pressure (VP) bilaterally, whereas pelvic nerve (PN) stimulation did not alter VP. However, after unilateral HGN transection, stimulation of the PN on the transected side but not on the normal side increased VP. The decentralized vas exhibited larger VP responses to stimulation of the contralateral HGN in comparison with the normal vas. After bilateral HGN transection, PN-induced VP responses were elicited at lower stimulus intensities than in rats with unilateral transections. PN-induced VP responses were blocked by hexamethonium and prazosin but were not altered by atropine. Distension of the vas lumen occurred after decentralization. PN-induced VP responses were not detectable in extremely distended vas. These data indicate that, after degeneration of sympathetic preganglionic axons, decentralized adrenergic ganglion cells are reinnervated by parasympathetic or sympathetic preganglionic pathways and that the reinnervation influences vasal function.


1983 ◽  
Vol 245 (3) ◽  
pp. R311-R320 ◽  
Author(s):  
R. Schondorf ◽  
W. Laskey ◽  
C. Polosa

The aim of the present study was to evaluate the organization of neural circuitry responsible for the intersegmental transmission of input from urinary bladder afferents to sympathetic preganglionic neurons (SPNs). The electrical activity of SPNs was recorded from axons of the cervical sympathetic trunk in anesthetized central nervous system (CNS)-intact and in unanesthetized midcollicular-decerebrate or acute C1 spinal cats. In all three preparations, tonically active SPNs were excited or inhibited by 1) electrical stimulation of myelinated afferents of the pelvic or hypogastric nerve, both of which contain bladder afferents, and 2) spontaneous contraction or distension of the urinary bladder. The SPN responses to bladder distension were abolished by pelvic nerve section. A comparison of responses of SPNs in CNS-intact and acute spinal animals to electrical stimulation of pelvic nerve afferents suggests that both propriospinal and supraspinal circuits are involved in the intersegmental transmission of input from bladder afferents to SPNs.


1961 ◽  
Vol 201 (2) ◽  
pp. 325-328 ◽  
Author(s):  
Laszlo Gyermek

The relative potency and mode of action of some cholinomimetics were investigated on the pelvic nerve-bladder preparation of the dog and cat. Most of the cholinomimetic agents used proved to be considerably more potent than acetylcholine (ACh). The peak activity was shown by muscarine and dl-muscarone, which were 100–300 times more potent than ACh. Atropine did not markedly influence the effect of the electrical stimulation on the pelvic nerve. Atropine also proved to be ineffective against the actions of 1,1-dimethyl,4-phenyl piperazinium iodide, serotonin, histamine, and BaCl2. It antagonized the effects of ACh only moderately, but completely inhibited the effects of muscarine and methacholine. After atropinization, hexamethonium inhibited the effects of nerve stimulation and ACh. ACh has a significant ganglionic component of its action on the bladder. It is postulated that part of the parasympathetic effector sites of the bladder functionally resemble autonomic ganglions. These ganglionic type of receptors seem to play an important role in the effects of parasympathetic nerve stimulation and in the action of ACh.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Forrest ◽  
Y. Zhang ◽  
A. Bicek ◽  
G. Timm

Urinary continence is maintained through coordination of electrical (nervous) and mechanical (muscles, ligaments and other structures) systems in the body. During micturition, the central nervous system sends a signal to the detrusor and sphincter muscles to coordinate voiding. Pathological problems can undermine either of the two systems and result in urinary incontinence (UI). Thirteen million people in the United States live with UI. Clinical treatments to date are largely mechanical in nature, restoring function through surgical interventions. However, electrically-based treatments, such as electric stimulation, offer a promising alternative. Here we investigate the utility of electrical stimulation of the periurethral neuromusculature to reduce voiding contractions in well-controlled animal experiments. Female Sprague Dawley rats were anesthetized with a ketamine/xylazine/acepromazine cocktail and the bladder was catheterized through a small incision in the bladder dome and was infused with saline. Continuous filling of the bladder triggered related cycles of voiding which was identified through bladder pressure increases and visual urination. The pubic symphysis bone was cut to expose the urethra and a stimulating electrode was placed in the periurethral region. The electrical stimulation parameters were 2.8 mA of current, 200 us pluses, and 20 Hz. The electrical stimulation was done in fifteen minute intervals. Statistically, the rats without electrical stimulation have an average contraction period of 63.1 sec (+/– 31.3 sec) and the rats with electrical stimulation have an average contraction period of 97.2 sec (+/– 43.0 sec). The results showed that the electrical stimulation of the periurethral neuromusculature in the group revealed 54.0% increase in average contraction period and decrease in voiding frequency. Electrical stimulation of the periurethral neuromusculature increases the voiding interval and void volume for the rats. This suggests the existence of an external urinary sphincter to the bladder inhibitory pathway and supports periurethral neuromusculature stimulation as an alternative to spinal nerve stimulation for the treatment of bladder overactivity.


Sign in / Sign up

Export Citation Format

Share Document