scholarly journals Electro-Acupuncture Attenuates Chronic Stress Responses via Up-Regulated Central NPY and GABAA Receptors in Rats

2021 ◽  
Vol 14 ◽  
Author(s):  
Yu Yang ◽  
Haijie Yu ◽  
Reji Babygirija ◽  
Bei Shi ◽  
Weinan Sun ◽  
...  

Stress can increase the release of corticotropin-releasing factor (CRF) in the hypothalamus, resulting in attenuation of gastric motor functions. In contrast, central neuropeptide Y (NPY) can reduce the biological actions of CRF, and in turn weaken stress responses. Although electroacupuncture (EA) at stomach 36 (ST-36) has been shown to have anti-stress effects, its mechanism has not yet been investigated. The effect of EA at ST-36 on the hypothalamus-pituitary-adrenal (HPA) axis and gastrointestinal motility in chronic complicated stress (CCS) conditions have not been studied and the inhibitory mechanism of NPY on CRF through the gamma-aminobutyric acid (GABA)A receptor need to be further investigated. A CCS rat model was set up, EA at ST-36 was applied to the bilateral hind limbs every day prior to the stress loading. Further, a GABAA receptor antagonist was intracerebroventricularly (ICV) injected daily. Central CRF and NPY expression levels were studied, serum corticosterone and NPY concentrations were analyzed, and gastric motor functions were assessed. CCS rats showed significantly elevated CRF expression and corticosterone levels, which resulted in inhibited gastric motor functions. EA at ST-36 significantly increased central NPY mRNA expression and reduced central CRF mRNA expression as well as the plasma corticosterone level, helping to restore gastric motor function. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects. EA at ST-36 upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize the overexpressed central CRF and attenuate the HPA axis activities in CCS conditions, exerting influences and helping to restore gastric motor function.

2021 ◽  
Author(s):  
Yu Yang ◽  
Haijie Yu ◽  
Reji Babygirija ◽  
Bei Shi ◽  
Weinan Sun ◽  
...  

Abstract Stress is widely believed to play a major role in the pathogenesis of many diseases. Central neuropeptide Y (NPY) counteracts the biological actions of corticotropin-releasing factor (CRF), and in turn attenuates stress responses. Administration (intracerebroventricular, ICV) of NPY, significantly antagonized the inhibitory effects of chronic complicated stress (CCS) on gastrointestinal (GI) dysmotility in rats. However, ICV administration is an invasive technique. The effect of intranasal administration of NPY on the hypothalamus-pituitary-adrenal (HPA) axis and GI motility in CCS conditions have not been studied, and the inhibitory mechanism of NPY on CRF through the gamma-aminobutyric acid (GABA)A receptor needs to be further investigated. A CCS rat model was set up, NPY was intranasal administered every day prior to the stress loading. Further, a GABAA receptor antagonist was ICV injected daily. Central CRF and NPY expression were evaluated, serum corticosterone and NPY levels were analyzed, and colonic motor functions was assessed. CCS rats showed significantly increased CRF expression and corticosterone levels, which resulted in enhanced colonic motor functions. Intranasal NPY significantly increased central NPY mRNA expression and reduced central CRF mRNA expression as well as the plasma corticosterone level, helping to restore colonic motor functions. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects. Intranasal administration of NPY upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize the overexpressed central CRF and attenuate the HPA axis activities in CCS conditions, exerting influences and helping to restore colonic motor function.


2004 ◽  
Vol 57 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Ingrid M. C. Kamerling ◽  
Aernout D. Van Haarst ◽  
Jacobus Burggraaf ◽  
Rik C. Schoemaker ◽  
Marieke L. De Kam ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Irina P. Butkevich ◽  
Viktor A. Mikhailenko ◽  
Tat'yana R. Bagaeva ◽  
Elena A. Vershinina ◽  
Anna Maria Aloisi ◽  
...  

Our researches have shown that gestational stress causes exacerbation of inflammatory pain in the offspring; the maternal 5-HT1A agonist buspirone before the stress prevents the adverse effect. The serotonergic system and hypothalamo-pituitary-adrenal (HPA) axis are closely interrelated. However, interrelations between inflammatory pain and the HPA axis during the hyporeactive period of the latter have not been studied. The present research demonstrates that formalin-induced pain causes a gradual and prolonged increase in plasma corticosterone level in 7-day-old male rats; twenty-four hours after injection of formalin, the basal corticosterone level still exceeds the initial basal corticosterone value. Chronic treatments of rat dams with buspirone before restraint stress during gestation normalize in the offspring pain-like behavior and induce during the acute phase in the formalin test the stronger corticosterone increase as compared to the stress hormonal elevation in animals with other prenatal treatments. Negative correlation between plasma corticosterone level and the number of flexes+shakes is revealed in buspirone+stress rats. The new data enhance the idea about relativity of the HPA axis hyporeactive period and suggest that maternal buspirone prior to stress during gestation may enhance an adaptive mechanism of the inflammatory nociceptive system in the infant male offspring through activation of the HPA axis peripheral link.


2008 ◽  
Vol 294 (6) ◽  
pp. E1011-E1022 ◽  
Author(s):  
Helen C. Atkinson ◽  
Susan A. Wood ◽  
Emma S. Castrique ◽  
Yvonne M. Kershaw ◽  
Crispin C. R. Wiles ◽  
...  

The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. This resulted in a significant reduction in plasma corticosterone concentrations within 23 min of the aldosterone bolus and 28 min of methylprednisolone. Evaluation of the pulsatile secretion of corticosterone revealed that the secretory event in progress at the time of administration of exogenous steroid was unaffected, whereas the next secretory event was inhibited by both aldosterone and methylprednisolone. The inhibitory effect of aldosterone was limited in duration (1 secretory event only), whereas that of methylprednisolone persisted for 4–5 h. Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shoko Shimizu ◽  
Takashi Tanaka ◽  
Takashi Takeda ◽  
Masaya Tohyama ◽  
Shingo Miyata

It is well known that glucocorticoid receptor (GR) signaling regulates the hypothalamic-pituitary-adrenal (HPA) axis, and GR expression level is associated with HPA axis activity. Recent studies revealed that microRNA- (miR-) 18 and/or 124a are candidate negative regulators of GR in the brain. TheKampomedicine Yokukansan (YKS) can affect psychological symptoms such as depression and anxiety that are associated with stress responses. In this study, we evaluated the effect of YKS on miR-18 and 124a and GR levels in mice exposed to stress. We found that YKS pretreatment normalized elevated plasma corticosterone levels in stress-exposed mice. In addition, GR mRNA levels were downregulated in the brain following stress exposure. While miR-124a expression levels were not altered in the hypothalamus of stress-exposed mice, miR-18 levels decreased in the hypothalamus of YKS-pretreated mice after stress exposure. Finally, GR protein levels in the paraventricular nucleus (PVN) of the hypothalamus after stress exposure recovered in YKS-pretreated mice. Collectively, these data suggest that YKS normalizes GR protein levels by regulating miR-18 expression in the hypothalamus, thus normalizing HPA axis activity following stress exposure.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Junechul Kim ◽  
Bo-Eun Yoon ◽  
Yong Kyun Jeon

High-intensity exercise can lead to chronic fatigue, which reduces athletic performance. On the contrary, probiotic supplements have many health benefits, including improvement of gastrointestinal health and immunoregulation. However, the effects of probiotics combined with exercise interventions on motor functions and brain activity have not been fully explored. Therefore, this study aimed to identify the effects of probiotic supplements and aerobic exercise on motor function, immune response, and exercise intensity and probiotic ingestion. After four weeks of intervention, the motor functions were assessed by rotarod test, then the levels of cytokines, gamma-aminobutyric acid (GABA), and glutamate were detected. The improvement caused by the intake of probiotics in the moderate-intensity exercise group and the non-exercise group in the accelerating mode rotarod was significant (p = 0.038, p < 0.001, respectively). In constant-speed mode, the moderate-intensity exercise group with probiotic ingestion recorded longer runs than the corresponding non-exercise group (p = 0.023), and the improvement owing to probiotics was significant in all groups—non-exercise, moderate, and high-intensity (p = 0.036, p = 0.036, p = 0.012, respectively). The concentrations of inflammatory cytokines were lower, whereas GABA was higher in the probiotics-ingested group. Taken together, exercise and probiotics in adolescence could positively affect brain and motor function.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1763-1770 ◽  
Author(s):  
Kathan Chintamaneni ◽  
Eric D. Bruder ◽  
Hershel Raff

Intermittent hypoxia (IH) is an animal model of apnea-induced hypoxia, a common stressor in the premature neonate. Neonatal stressors may have long-term programming effects in the adult. We hypothesized that neonatal exposure to IH leads to significant changes in basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis function in the adult male rat. Rat pups were exposed to normoxia (control) or 6 approximately 30-second cycles of IH (5% or 10% inspired O2) daily on postnatal days 2–6. At approximately 100 days of age, we assessed the diurnal rhythm of plasma corticosterone and stress-induced plasma ACTH and corticosterone responses, as well as mRNA expression of pertinent genes within the HPA axis. Basal diurnal rhythm of plasma corticosterone concentrations in the adult rat were not affected by prior exposure to neonatal IH. Adults exposed to 10% IH as neonates exhibited an augmented peak ACTH response and a prolonged corticosterone response to restraint stress; however, HPA axis responses to insulin-induced hypoglycemia were not augmented in adults exposed to neonatal IH. Pituitary Pomc, Crhr1, Nr3c1, Nr3c2, Avpr1b, and Hif1a mRNA expression was decreased in adults exposed to neonatal 10% IH. Expression of pertinent hypothalamic and adrenal mRNAs was not affected by neonatal IH. We conclude that exposure to neonatal 10% IH programs the adult HPA axis to hyperrespond to acute stimuli in a stressor-specific manner.


2013 ◽  
Vol 219 (2) ◽  
pp. 89-100 ◽  
Author(s):  
Anna Fodor ◽  
Ottó Pintér ◽  
Ágnes Domokos ◽  
Kristina Langnaese ◽  
István Barna ◽  
...  

Adaptation to stress is a basic phenomenon in mammalian life that is mandatorily associated with the activity of the hypothalamic–pituitary–adrenal (HPA) axis. An increased resting activity of the HPA axis can be measured during pregnancy and lactation, suggesting that these reproductive states lead to chronic load in females. In this study, we examined the consequences of the congenital lack of vasopressin on the activity of the HPA axis during lactation using vasopressin-deficient Brattleboro rats. Virgin and lactating, homozygous vasopressin-deficient rats were compared with control, heterozygous rats. In control dams compared with virgins, physiological changes similar to those observed in a chronic stress state (thymus involution, adrenal gland hyperplasia, elevation of proopiomelanocortin mRNA levels in the adenohypophysis, and resting plasma corticosterone levels) were observed. In vasopressin-deficient dams, adrenal gland hyperplasia and resting corticosterone level elevations were not observed. Corticotropin-releasing hormone (Crh) mRNA levels in the hypothalamic paraventricular nucleus were elevated in only the control dams, while oxytocin (OT) mRNA levels were higher in vasopressin-deficient virgins and lactation induced a further increase in both the genotypes. Suckling-induced ACTH and corticosterone level elevations were blunted in vasopressin-deficient dams. Anaphylactoid reaction (i.v. egg white) and insulin-induced hypoglycemia stimulated the HPA axis, which were blunted in lactating rats compared with the virgins and in vasopressin-deficient rats compared with the controls without interaction of the two factors. Vasopressin seems to contribute to the physiological changes observed during lactation mimicking a chronic stress state, but its role in acute HPA axis regulation during lactation seems to be similar to that observed in virgins. If vasopressin is congenitally absent, OT, but not the CRH, compensates for the missing vasopressin; however, the functional restitution remains incomplete.


Sign in / Sign up

Export Citation Format

Share Document