scholarly journals Isoliquiritigenin Confers Neuroprotection and Alleviates Amyloid-β42-Induced Neuroinflammation in Microglia by Regulating the Nrf2/NF-κB Signaling

2021 ◽  
Vol 15 ◽  
Author(s):  
Yue Fu ◽  
Jianping Jia

BackgroundNeuroinflammation and oxidative stress are two major pathological characteristics of Alzheimer’s disease (AD). Amyloid-β oligomers (AβO), a toxic form of Aβ, promote the neuroinflammation and oxidative stress in the development of AD. Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of liquorice, has been shown to exert inhibitory effects on inflammatory response and oxidative stress.ObjectivesThe main purpose of this study is to assess the influence of ISL on inflammatory response and oxidative stress in BV2 cells stimulated with AβO, and to explore the underlying molecular mechanisms.Methods3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H- tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) cytotoxicity assays were used to assess the toxic or protective effects of ISL. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assays. Morphological changes in BV2 cells were assessed by immunofluorescence method. Nitric oxide (NO) assay kit was used to determinate the NO production. Western blot, qRT-PCR and immunofluorescence were used to explore the underlying molecular mechanisms.ResultsISL treatment reduced the production of inflammatory cytokines and NO, and alleviated the morphological changes in BV2 cells induced by AβO. ISL treatment further protected N2a cells from the toxic medium of AβO-stimulated BV2 cells. ISL activated nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and suppressed nuclear factor-κB (NF-κB) signaling in BV2 cells.ConclusionISL suppresses AβO-induced inflammation and oxidative stress in BV2 cells via the regulation of Nrf2/NF-κB signaling. Therefore, ISL indirectly protects neurons from the damage of toxic conditioned media.

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Lara Macchioni ◽  
Davide Chiasserini ◽  
Letizia Mezzasoma ◽  
Magdalena Davidescu ◽  
Pier Luigi Orvietani ◽  
...  

Age-related retinal degenerations, including age-related macular degeneration (AMD), are caused by the loss of retinal pigmented epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD, deeply linked to the aging process, also involves oxidative stress and inflammatory responses. However, the molecular mechanisms contributing to the shift from healthy aging to AMD are still poorly understood. Since RPE cells in the retina are chronically exposed to a pro-oxidant microenvironment throughout life, we simulated in vivo conditions by growing ARPE-19 cells in the presence of 10 μM H2O2 for several passages. This long-term oxidative insult induced senescence in ARPE-19 cells without affecting cell proliferation. Global proteomic analysis revealed a dysregulated expression in proteins involved in antioxidant response, mitochondrial homeostasis, and extracellular matrix organization. The analyses of mitochondrial functionality showed increased mitochondrial biogenesis and ATP generation and improved response to oxidative stress. The latter, however, was linked to nuclear factor-κB (NF-κB) rather than nuclear factor erythroid 2–related factor 2 (Nrf2) activation. NF-κB hyperactivation also resulted in increased pro-inflammatory cytokines expression and inflammasome activation. Moreover, in response to additional pro-inflammatory insults, senescent ARPE-19 cells underwent an exaggerated inflammatory reaction. Our results indicate senescence as an important link between chronic oxidative insult and detrimental chronic inflammation, with possible future repercussions for therapeutic interventions.


2021 ◽  
pp. 096032712110361
Author(s):  
Hai-Tao Zhang ◽  
Xi-Zeng Wang ◽  
Qing-Mei Zhang ◽  
Han Zhao

Objective To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. Methods The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress–related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. Results At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. Conclusion Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.


2020 ◽  
Author(s):  
Ni Dai ◽  
Chenglin Tang ◽  
Hongdi Zhao ◽  
Pan Dai ◽  
Siqin Huang

Abstract Background: Spinal cord injury (SCI) is a catastrophic central nervous system disease. Inflammatory response and oxidative stress are two critical factors in the pathophysiological process of SCI and closely involved with Apolipoprotein E(ApoE) and Nuclear factor erythroid 2-related factor (Nrf2). Electroacupuncture (EA) has perfectly neuroprotective effect on SCI. However, the underlying mechanism by which EA mediates the inflammatory response and oxidative stress is not completely elucidated. In the present study, we investigated the signaling pathways that EA regulates inflammatory response and oxidative stress through elevation of ApoE and Nrf2 after SCI.Methods: C57BL/6 Wide Type (WT) mice and ApoE -/- mice were subjected to SCI model by a serrefine clamping. Neurological function was detected by BMS scores, ultrastructure of demyelinationed axons was observed by transmission electron microscopy. ApoE, pro- and anti- inflammatory cytokines, oxidative stress-relevant proteins were determined by histochemistry technology. Two-way ANOVA was applied to BMS scores. One-way ANOVA and Bonferroni's multiple comparison test were used to analyse differences among groups.Results: BMS scores were increased gradually and demyelinated axons were improved by EA gradually with the expression of ApoE. EA can inhibit inflammatory response by activation of ApoE, which decreased pro-inflammatory cytokines(TNF-α, IL-6, and IL-1β) expression and increased anti-inflammatory cytokines(IL-10 and TGF-β1).Meanwhile, EA can also inhibit oxidative stress by elevation of Nrf2,which induced HO-1 and NQO1 expression in WT and ApoE -/- mice.Conclusions: EA is a reliable treatment for promoting functional recovery of SCI. Thesynergisticrole of ApoE and Nrf2 in EA regulating inflammatory response and oxidative stress is decisiveto recovery after SCI.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1295
Author(s):  
Sewoong Lee ◽  
Jain Ha ◽  
Jiyoung Park ◽  
Eunjeong Kang ◽  
Sung-Hyun Jeon ◽  
...  

Bischofia javanica (Blume) has been traditionally used to treat inflammatory diseases such as tonsillitis and ulcers throughout Asia, including China, Indonesia, and the Philippines: however, the molecular mechanisms by which B. javanica exerts its antioxidant and anti-inflammatory properties remain largely unknown. In this study, we analyzed the antioxidant and anti-inflammatory mechanisms of methanol extracts of B. javanica leaves (MBJ) in vitro and in vivo. MBJ decreased nitric oxide (NO) production and the expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The observed suppression of inflammatory responses by MBJ was correlated with an inhibition of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathways. Additionally, MBJ induced nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that upregulates the expression of anti-inflammatory and antioxidant genes. Furthermore, MBJ exhibited antioxidant and anti-inflammatory effects in an acute hepatitis mouse model. In conclusion, our results confirm the medicinal properties of B. javanica, and therefore MBJ could be applied to improve inflammatory and redox imbalances in different types of pathologies.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1882
Author(s):  
Quynh T. N. Nguyen ◽  
Minzhe Fang ◽  
Nhung Quynh Do ◽  
Jeehaeng Jeong ◽  
Sarang Oh ◽  
...  

Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North America that is well known for treating microorganism infection and promoting wound healing, was investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2). AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects of AC on skin cellular components suggested that it has the potential for use in the development of drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging.


2021 ◽  
Author(s):  
ZHIPENG CHEN ◽  
HEQIAN LIU ◽  
SUBINUR MAMATELI ◽  
CHENG LIU ◽  
YUTONG LIU ◽  
...  

Abstract Background Atherosclerosis (AS) is the primary cause of cardiovascular disease and the incidence is extremely common; however, there are currently few drugs that can effectively treat AS. Although oridonin has been widely used to treat inflammation and cancer for numerous years, to the best of our knowledge, its protective effect against AS has not been reported. Therefore, the present study aimed to investigate whether oridonin attenuated AS. Methods By using text mining, chemometric and chemogenomic methods, oridonin was predicted to be a beneficial agent for the treatment of AS. A parallel flow chamber was used to establish a low shear stress (LSS)-induced endothelial cell (EC) dysfunction model. Briefly, ECs were exposed to 3 dyn/cm2 LSS for 30 min and subsequently treated with oridonin or transfected with a small interfering RNA (siRNA) targeting nuclear factor erythroid 2-related factor 2 (NRF2). Reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) in EA.hy926 cells were analyzed to determine the level of oxidative stress. The nitric oxide (NO) levels and mRNA expression levels of endothelial NO synthase (eNOS), endothelin-1 (ET-1) and prostaglandin synthase (PGIS) in EA.hy926 cells were analyzed to determine EC dysfunction. Furthermore, the mRNA expression levels of NRF2 were analyzed using reverse transcription-quantitative PCR. In addition, zebrafish were fed with a high-cholesterol diet to establish a zebrafish AS model, which was used to observe lipid accumulation and inflammation under a fluorescence microscope. Results We found LSS led to oxidative stress and EC dysfunction; this was primarily indicated through the significantly decreased SOD and GSH content, the significantly increased MDA, GSSG and ROS content, the upregulated mRNA expression levels of ET-1, and the downregulated NO levels and mRNA expression levels of eNOS and PGIS in ECs. Notably, oridonin could improve LSS-induced oxidative stress and EC dysfunction,and the effects of oridonin were reversed by the transfection with NRF2 siRNA. Oridonin also attenuated lipid accumulation and neutrophil recruitment at the LSS regions in the zebrafish AS model. Conclusions In conclusion, the results of the present study suggested that oridonin may ameliorate LSS-induced EC dysfunction and oxidative stress by activating NRF2, thereby attenuating AS.


Sign in / Sign up

Export Citation Format

Share Document