scholarly journals Assessing Causal Relationship Between Human Blood Metabolites and Five Neurodegenerative Diseases With GWAS Summary Statistics

2021 ◽  
Vol 15 ◽  
Author(s):  
Haimiao Chen ◽  
Jiahao Qiao ◽  
Ting Wang ◽  
Zhonghe Shao ◽  
Shuiping Huang ◽  
...  

Background: Neurodegenerative diseases (NDDs) are the leading cause of disability worldwide while their metabolic pathogenesis is unclear. Genome-wide association studies (GWASs) offer an unprecedented opportunity to untangle the relationship between metabolites and NDDs.Methods: By leveraging two-sample Mendelian randomization (MR) approaches and relying on GWASs summary statistics, we here explore the causal association between 486 metabolites and five NDDs including Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease (PD), and multiple sclerosis (MS). We validated our MR results with extensive sensitive analyses including MR-PRESSO and MR-Egger regression. We also performed linkage disequilibrium score regression (LDSC) and colocalization analyses to distinguish causal metabolite-NDD associations from genetic correlation and LD confounding of shared causal genetic variants. Finally, a metabolic pathway analysis was further conducted to identify potential metabolite pathways.Results: We detected 164 metabolites which were suggestively associated with the risk of NDDs. Particularly, 2-methoxyacetaminophen sulfate substantially affected ALS (OR = 0.971, 95%CIs: 0.961 ∼ 0.982, FDR = 1.04E-4) and FTD (OR = 0.924, 95%CIs: 0.885 ∼ 0.964, FDR = 0.048), and X-11529 (OR = 1.604, 95%CIs: 1.250 ∼ 2.059, FDR = 0.048) and X-13429 (OR = 2.284, 95%CIs: 1.457 ∼ 3.581, FDR = 0.048) significantly impacted FTD. These associations were further confirmed by the weighted median and maximum likelihood methods, with MR-PRESSO and the MR-Egger regression removing the possibility of pleiotropy. We also observed that ALS or FTD can alter the metabolite levels, including ALS and FTD on 2-methoxyacetaminophen sulfate. The LDSC and colocalization analyses showed that none of the identified associations could be driven by genetic correlation or confounding by LD with common causal loci. Multiple metabolic pathways were found to be involved in NDDs, such as “urea cycle” (P = 0.036), “arginine biosynthesis” (P = 0.004) on AD and “phenylalanine, tyrosine and tryptophan biosynthesis” (P = 0.046) on ALS.Conclusion: our study reveals robust bidirectional causal associations between servaral metabolites and neurodegenerative diseases, and provides a novel insight into metabolic mechanism for pathogenesis and therapeutic strategies of these diseases.

2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2015 ◽  
Author(s):  
Dominic Holland ◽  
Yunpeng Wang ◽  
Wesley K Thompson ◽  
Andrew Schork ◽  
Chi-Hua Chen ◽  
...  

Genome-wide Association Studies (GWAS) result in millions of summary statistics (``z-scores'') for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities that does not require raw genotype data, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype -- the proportion of SNPs (after uniform pruning, so that large LD blocks are not over-represented) likely to be in strong LD with causal/mechanistically associated SNPs -- and predicting the proportion of chip heritability explainable by genome wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N=82,315) and additionally, for purposes of illustration, putamen volume (N=12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We estimate the degree to which effect sizes are over-estimated when based on linear regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2015 ◽  
Author(s):  
Hilary Kiyo Finucane ◽  
Brendan Bulik-Sullivan ◽  
Alexander Gusev ◽  
Gosia Trynka ◽  
Yakir Reshef ◽  
...  

Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits spanning a total of 1.3 million phenotype measurements. To enable this analysis, we introduce a new method for partitioning heritability from GWAS summary statistics while controlling for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. These results demonstrate that GWAS can aid in understanding the biological basis of disease and provide direction for functional follow-up.


2020 ◽  
Author(s):  
Mike A. Nalls ◽  
Cornelis Blauwendraat ◽  
Lana Sargent ◽  
Dan Vitale ◽  
Hampton Leonard ◽  
...  

SUMMARYBackgroundPrevious research using genome wide association studies (GWAS) has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases.MethodsWe utilized GWAS, expression quantitative trait locus (eQTL) mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data driven process.FindingseQTL analyses combined with GWAS identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex.InterpretationGRN expression mediates neuroinflammation function related to general neurodegeneration. This analysis suggests shared mechanisms for Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis.FundingNational Institute on Aging, National Institute of Neurological Disorders and Stroke, and the Michael J. Fox Foundation.


Sign in / Sign up

Export Citation Format

Share Document