scholarly journals Effects of Oligomeric Procyanidins From Lotus Seedpod on the Retrogradation Properties of Rice Starch

2021 ◽  
Vol 8 ◽  
Author(s):  
Nianjie Feng ◽  
Shaowen She ◽  
Hengfeng Hu ◽  
Shimiao Tang ◽  
Jiangying Tan ◽  
...  

The extent of retrogradation strongly affects certain physical and cooking properties of rice starch (RS), which are important to consumers. In this study, oligomeric procyanidins from lotus seedpod (LSOPC) was prepared and used to investigate its inhibitory effect on RS retrogradation. Various structural changes of RS during retrogradation were characterized by differential scanning calorimetry, low field nuclear magnetic resonance, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results showed LSOPC could effectively retard both short- and long-term retrogradation of RS, and its inhibitory effect was dependent on the administered concentration of LSOPC. Molecule simulation revealed the interactions of RS and LSOPC, which indicated that the competition of hydrogen bonds between RS and LSOPC was the critical factor for anti-retrogradation. This inhibitory effect and mechanism of action of LSOPC could promote its applications in the field of starch anti-retrogradation.

2009 ◽  
Vol 41 (2) ◽  
pp. 175-184 ◽  
Author(s):  
L. Ribic-Zelenovic ◽  
M. Spasojevic ◽  
A. Maricic ◽  
M.M. Ristic

Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC) lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM) showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC) and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.


2016 ◽  
Vol 5 (3) ◽  
pp. 61
Author(s):  
J. M. Tirado-Gallegos ◽  
D. R. Sepúlveda-Ahumada ◽  
P. B. Zamudio-Flores ◽  
M. L. Rodríguez-Marin ◽  
Francisco Hernández-Centeno ◽  
...  

<p>Packaging increases the shelf life of food and facilitates its handling, transportation and marketing. The main packaging materials are plastics derived from petroleum, but their accumulation has given rise to environmental problems. An alternative is the use of biodegradable materials. In this regard, starch is an excellent choice because it is an abundant and renewable source with film-forming properties. However, the films obtained from starch have some limitations with respect to their mechanical and barrier properties. Several strategies have been developed in order to improve these limitations, ranging from the addition of lipids to the modification of the polymer structure. The aim of this review was propose the use of ellagic acid as a cross-linking agent that may improves the mechanical and barrier properties in films based on exists reports that phenolic compounds interact with starch-based materials decreasing their rate of retrogradation. Furthermore, ellagic acid is a powerful natural antioxidant, which would allow the production of active packaging with antioxidant properties, in addition to the improvement of the mechanical and barrier properties of starch films. In this concern more studies such as Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis are necessary to verify the structural changes and interactions between starch and ellagic acid. We expect extensive use of it in the future of packaging materials.</p>


2006 ◽  
Vol 514-516 ◽  
pp. 692-696 ◽  
Author(s):  
Rui Jorge C. Silva ◽  
L.A. Matlakhova ◽  
E.C. Pereira ◽  
A.N. Matlakhov ◽  
Sérgio Neves Monteiro ◽  
...  

In the present work a monocrystalline Cu-13.5Al-4Ni (wt.%) alloy with shape memory effect (SME) submitted to thermal cycling inside the critical range was investigated in terms of number of cycles and resulting structural changes. Attention was paid to the structural changes associated with reversible β1↔γ’1 martensite transformation. The monocrystalline Cu-Al-Ni alloy was produced in Russia, according to a specific technology. The structural characteristic of the alloys was studied through optical microscopy and X-ray diffraction methods using Cu-Kα radiation. Differential scanning calorimetry permitted the determination of the temperature range as well as a thermal effect due to the β1↔γ’1 martensitic reversible transformations, before and after 100, 200 and 300 thermal cycles.


2008 ◽  
Vol 23 (2) ◽  
pp. 565-569 ◽  
Author(s):  
Runrun Duan ◽  
Michael S. Haluska ◽  
Robert F. Speyer

Compositions of xBiLaO3–(1 − x) PbTiO3 over the range 0 ≤ x ≤ 0.225 were calcined and sintered. The dielectric constant with temperature and differential scanning calorimetry measurements were in excellent agreement with respect to Curie-like tetragonal to cubic transformations starting at 495 °C for pure PbTiO3, shifting to lower temperatures with increasing x. For compositions of x ≥ 0.05, a second higher-temperature (∼600 °C) endotherm, and matching dielectric anomaly, were consistently observed, for which there were no structural changes indicated by hot-stage x-ray diffraction. This transformation was speculated to be based on a thermally induced desegregation of B-site cations.


2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2010 ◽  
Vol 159 ◽  
pp. 363-370
Author(s):  
Hua Xi Xiao ◽  
Qin Lu Lin ◽  
Yue Wu ◽  
Wei Tian ◽  
Wei Wu

Rice, maize and potato starches were hydrolyzed by amylase to obtain porous starches as final product. The adsorptive capacity, desorbed rates, degree of crystallinity and retrogradation properties of native and porous starches were investigated. The results showed that porous starches had the stronger adsorptive capacity and slower desorbed rate compared with native starches. In the three starch materials, the adsorptive capacity of rice starch for liquids was the strongest; the adsorptive capacity of potato starch for liquids was the weakest. the more flavors adsorbed, the more flavors desorbed. X-ray diffraction showed that Enzyme hydrolysis did not result in any significant changes in the degree of crystallinity of starch. The porous starches exhibited lower tendency of retrogradation as assessed by differential scanning calorimetry (DSC).


2006 ◽  
Vol 111 ◽  
pp. 55-58
Author(s):  
L.L. Guo ◽  
Y.D. Dai ◽  
H.X. Liu ◽  
Shi Xi Ouyang

This paper focuses on the structural change and the thermochromism of the phase transition of the hybrid (C12H25NH3)2FeCl4. The temperature and the structures of the phase transition is investigated by a thermal gravimetry (TG) and differential scanning calorimetry (DSC), an infrared spectra (IR) and X-ray diffraction (XRD) patterns. The UV adsorption spectra account for the thermochromism. The results suggest that the reversible phase transition arises from the structural changes of the organic chains. The thermochromism is presumably due to the electrons redistribution on the levels and to the energy transition to translational and rotational motions of the organic chains.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 366-377 ◽  
Author(s):  
L. B. Rebouças ◽  
M. T. Souza ◽  
F. Raupp-Pereira ◽  
A. P. Novaes de Oliveira

Abstract Glass-ceramics in the LAS (Li2O-Al2O3-SiO2) system with high thermal shock resistance were successfully obtained using Brazilian spodumene concentrate as the main raw material (80-70 wt%). Two compositions (Li2O.Al2O3.nSiO2) were produced with n= 2 and 4, near to the stoichiometric compositions of β-eucryptite and β-spodumene. The characteristic temperatures of parent glasses were determined by contact dilatometry, differential scanning calorimetry and heating microscopy. The crystallization mechanism and the effect of the nucleating agent (TiO2.2ZrO2) required to promote volume crystallization in the parent glasses were investigated. Microstructural and structural changes with temperature were also evaluated by optical microscopy and X-ray diffraction. The obtained glass-ceramics presented coefficients of thermal expansion between -0.370x10-6 and 4.501x10-6 °C-1 in the 22 to 700 °C range.


2012 ◽  
Vol 189 ◽  
pp. 209-232 ◽  
Author(s):  
Rajshree B. Jotania ◽  
Hardev Singh Virk

This paper attempts to provide a historical survey of structure of various types of hexaferrites. It provides information about synthesis, characterization, structural, magnetic and dielectric properties of Y-type hexagonal ferrites using various chemical routes. We have prepared a series of cobalt doped Sr2Cu2-xCoxFe12O22(x = 0.0 to 1.0) hexaferrites using a wet chemical co-precipitation technique. The prepared hexaferrite precursors were calcined at 950 °C for 4 hours in a furnace and slowly cooled to room temperature. The crystal structure of Y-type hexaferrites is rather complicated. The chemical and structural changes were examined in detail by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM), and Fourier transform infra-red (FTIR) spectroscopy. X-ray diffraction studies showed that sintering temperature as low as 950°C was sufficient to produce a single-phase Y-type hexaferrite material. The dielectric measurements were carried out over the frequency range of 100 Hz to 2 MHz at room temperature using an LCR meter to study the variation of dielectric constant and loss tangent with frequency. The magnetic properties of hexaferrite samples were investigated using a vibration sample magnetometer (VSM), and a superconducting quantum interference device (SQUID) magnetometer in the temperature range 30K to 200K. A change from ferromagnetic state to super paramagnetic state has been observed in Co doped Sr2Cu2-xCoxFe12O22(x= 0.6 to 1.0) hexaferrite. The novel applications of all types of hexaferrite materials have been described.


MRS Advances ◽  
2017 ◽  
Vol 2 (61) ◽  
pp. 3845-3850
Author(s):  
Jorge López-Cuevas ◽  
Juan C. Rendón-Angeles ◽  
José L. Rodríguez-Galicia ◽  
Carlos A. Gutiérrez-Chavarría

AbstractGlasses and glass-ceramics of the system Diopside [D, CaMgSi2O6] - Fluorapatite [FAp, Ca5(PO4)3F] were synthesized and characterized. The studied theoretical phase compositions were (wt%): 1) 70% D-30% FAp, 2) 60% D-40% FAp and 3) 80% D-20% FAp. The glass-ceramics were synthesized by isothermal treatment of the corresponding parent glasses at either 800, 900 or 1000 °C, with holding times of either 30 min, 2 h or 5 h at high temperature. The in vitro bioactivities of all materials were tested in Kokubo’s Simulated Body Fluid (SBF), for 21 days at pH = 7.4 and 37 °C. All materials were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM/EDS). In all cases, the in vitro bioactivity increased with decreasing crystallization degree in the materials, which was likely due to an inhibitory effect of the structural changes occurring during thermal treatment of the glasses. This was more accentuated for long thermal treatments. After 21 days of soaking in the SBF, an apatite-like surface layer, with a Ca/P molar ratio close to 1.67, was formed in the case of the parent glass of composition 2. This was attributed to an enhancing effect of so-called “phase separation” phenomenon that took place during the synthesis of that particular glass. Lastly, the MgO content of the glasses made no clear difference on their in vitro bioactivity.


Sign in / Sign up

Export Citation Format

Share Document