scholarly journals Communication Between Epithelial–Mesenchymal Plasticity and Cancer Stem Cells: New Insights Into Cancer Progression

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaobo Zheng ◽  
Fuzhen Dai ◽  
Lei Feng ◽  
Hong Zou ◽  
Li Feng ◽  
...  

The epithelial–mesenchymal transition (EMT) is closely associated with the acquisition of aggressive traits by carcinoma cells and is considered responsible for metastasis, relapse, and chemoresistance. Molecular links between the EMT and cancer stem cells (CSCs) have indicated that EMT processes play important roles in the expression of CSC-like properties. It is generally thought that EMT-related transcription factors (EMT-TFs) need to be downregulated to confer an epithelial phenotype to mesenchymal cells and increase cell proliferation, thereby promoting metastasis formation. However, the genetic and epigenetic mechanisms that regulate EMT and CSC activation are contradictory. Emerging evidence suggests that EMT need not be a binary model and instead a hybrid epithelial/mesenchymal state. This dynamic process correlates with epithelial–mesenchymal plasticity, which indicates a contradictory role of EMT during cancer progression. Recent studies have linked the epithelial–mesenchymal plasticity and stem cell-like traits, providing new insights into the conflicting relationship between EMT and CSCs. In this review, we examine the current knowledge about the interplay between epithelial–mesenchymal plasticity and CSCs in cancer biology and evaluate the controversies and future perspectives. Understanding the biology of epithelial–mesenchymal plasticity and CSCs and their implications in therapeutic treatment may provide new opportunities for targeted intervention.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Wenjuan Mei ◽  
Xiaozeng Lin ◽  
Anil Kapoor ◽  
Yan Gu ◽  
Kuncheng Zhao ◽  
...  

Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.


2022 ◽  
Vol 23 (2) ◽  
pp. 800
Author(s):  
Monica Fedele ◽  
Riccardo Sgarra ◽  
Sabrina Battista ◽  
Laura Cerchia ◽  
Guidalberto Manfioletti

The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.


2020 ◽  
Vol 9 (5) ◽  
pp. 1502 ◽  
Author(s):  
Marco Giordano ◽  
Ugo Cavallaro

L1 cell adhesion molecule (L1CAM) is aberrantly expressed in several tumor types where it is causally linked to malignancy and therapy resistance, acting also as a poor prognosis factor. Accordingly, several approaches have been developed to interfere with L1CAM function or to deliver cytotoxic agents to L1CAM-expressing tumors. Metastatic dissemination, tumor relapse and drug resistance can be fueled by a subpopulation of neoplastic cells endowed with peculiar biological properties that include self-renewal, efficient DNA repair, drug efflux machineries, quiescence, and immune evasion. These cells, known as cancer stem cells (CSC) or tumor-initiating cells, represent, therefore, an ideal target for tumor eradication. However, the molecular and functional traits of CSC have been unveiled only to a limited extent. In this context, it appears that L1CAM is expressed in the CSC compartment of certain tumors, where it plays a causal role in stemness itself and/or in biological processes intimately associated with CSC (e.g., epithelial-mesenchymal transition (EMT) and chemoresistance). This review summarizes the role of L1CAM in cancer focusing on its functional contribution to CSC pathophysiology. We also discuss the clinical usefulness of therapeutic strategies aimed at targeting L1CAM in the context of anti-CSC treatments.


2020 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Muhammad Ali ◽  
Fatima Ali ◽  
Nadia Wajid

Since the cancer stem cells (CSC) have been identified in 1997 by Bonnet and Dick, more than 100,000 papers have been published on the CSC. Huge research on cancer stem cells helped the scientists to rethink about the cancer therapeutics as classic way of chemotherapy is ineffective because chemotherapy failed to kill these cells, the only reason of cancer relapse. The cancer theory of stem cells is one of the most trending theory in stem cells and cancer biology focusing on the understanding of biology of cancer cells for an enhanced and improved therapeutic approaches should be applied to cure the cancer. This mini-review is a short overview on the role of organ specific cancer stem cells in the organ specific cancer progression.


Sign in / Sign up

Export Citation Format

Share Document