scholarly journals Crizotinib and Doxorubicin Cooperatively Reduces Drug Resistance by Mitigating MDR1 to Increase Hepatocellular Carcinoma Cells Death

2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Shao ◽  
Run Shi ◽  
Zhen-Xing Gao ◽  
Shan-Shan Gao ◽  
Jing-Feng Li ◽  
...  

As the sixth most lethal cancers worldwide, hepatocellular carcinoma (HCC) has been treated with doxorubicin (Dox) for decades. However, chemotherapy resistance, especially for Dox is an even more prominent problem due to its high cardiotoxicity. To find a regimen to reduce Dox resistance, and identify the mechanisms behind it, we tried to identify combination of drugs that can overcome drug resistance by screening tyrosine kinase inhibitor(s) with Dox with various HCC cell lines in vitro and in vivo. We report here that combination of Crizo and Dox has a synergistic effect on inducing HCC cell death. Accordingly, Crizo plus Dox increases Dox accumulation in nucleus 3-16 times compared to Dox only; HCC cell death enhanced at least 50% in vitro and tumor weights reduced ranging from 35 to 65%. Combining these two drugs reduces multiple drug resistance 1 (MDR1) protein as a result of activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), which phosphorylates eIF2α, leading to protein translational repression. Additionally, PERK stimulation activates C-Jun terminal kinase (JNK), resulting in accumulation of unfused autophagosome to enhance autophagic cell death via Poly-ADP-ribosyltransferase (PARP-1) cleavage. When the activity of PERK or JNK is blocked, unfused autophagosome is diminished, cleaved PARP-1 is reduced, and cell death is abated. Therefore, Crizo plus Dox sensitize HCC drug resistance by engaging PERK-p- eIF2α-MDR1, and kill HCC cells by engaging PERK-JNK- autophagic cell death pathways. These newly discovered mechanisms of Crizo plus Dox not only provide a potential treatment for HCC but also point to an approach to overcome MDR1 related drug resistance in other cancers.

2021 ◽  
Author(s):  
BiSha Ding ◽  
Chang Bao ◽  
Luqi Jin ◽  
Liang Xu ◽  
Zhijun Dai ◽  
...  

Abstract Background: Advanced hepatocellular carcinoma (HCC) patients usually fail to be treated because of drug resistance, including sorafenib. Methods: The expression and prognostic role of calcium/calmodulin-dependent serine protein kinase (CASK) in HCC were assessed by combination of bioinformatic analysis and experimental validation. The effects of CASK in regulating proliferation, apoptosis and drug resistance of HCC cells in vitro and in vivo were investigated using gain- or loss-of-function strategies by performing lots of specific methods including Cell Counting kit-8 (CCK8), colony formation assay, flow cytometry, transmission electron microscopy, immunofluorescent confocal laser microscopy and tumor xenograft experiments, immunohistochemistry staining. Moreover, the underlying molecular mechanisms responsible for CASK’s functions in HCC were also explored. Results: Currently, we discovered that CASK was positively associated with sorafenib resistance of HCC in vitro and in vivo, and was significantly related with poor prognosis in HCC. Moreover, inhibition of CASK can increase the effect of sorafenib partially by promoting apoptosis and autophagy, while CASK overexpression presented the opposite results. Besides, all the pan-caspase inhibitor Z-VAD-FMK, autophagy inhibitor 3-Methyladenine (3-MA) and small interfering RNA (siRNA) of LC3B reversed CASK knockout-induced effects with sorafenib treatment, suggesting that both apoptosis and autophagy were involved in CASK-mediated above functions and autophagy played a pro-death role in this research. Intriguingly, similar results were observed in vivo. In molecular level, CASK knockout activated the c-Jun N-terminal kinase (JNK) pathway, and treatment with JNK inhibitor SP600125 or transiently transfected with si-JNK significantly attenuated CASK knockout-mediated autophagic cell death. Besides, knockout of CASK dramatically inhibited the expression of ATP binding cassette subfamily G member 2 (ABCG2) and reversed of multidrug-resistance (MDR) of HCC. Conclusions: Collectively, all these results together indicated that CASK might be a promising biomarker for HCC patients and a potential therapeutic target for relieving drug resistance of HCC.


2009 ◽  
Vol 58 (9) ◽  
pp. 1203-1206 ◽  
Author(s):  
Robin K. Pettit ◽  
Christine A. Weber ◽  
Stacey B. Lawrence ◽  
George R. Pettit ◽  
Melissa J. Kean ◽  
...  

The alarming spread of multiple drug resistance in Staphylococcus aureus, combined with the frequent occurrence of S. aureus and Staphylococcus epidermidis in biofilm-type infections, indicates a growing need for new therapies. The experimental steroidal amide anprocide [3β-acetoxy-17β-(l-prolyl)amino-5α-androstane] significantly reduced c.f.u. ml−1 per suture (P <0.0001) in a murine model of topical S. aureus infection. In chequerboard assays with planktonic-grown S. aureus and S. epidermidis, anprocide was synergistic with bacitracin, oxacillin, clindamycin or ceftriaxone. Anprocide was also synergistic in combination with bacitracin or oxacillin against some isolates of biofilm-grown S. aureus and S. epidermidis.


2020 ◽  
Vol 27 (20) ◽  
pp. 3290-3301
Author(s):  
Min Yao ◽  
Wenli Sai ◽  
Wenjie Zheng ◽  
Li Wang ◽  
Zhizhen Dong ◽  
...  

Background: Although secretory clusterin (sCLU) plays a crucial role in Hepatocellular Carcinoma (HCC) cells proliferation, Multiple Drug Resistance (MDR), metastasis and so on, its targeted effects and exact mechanism are still unknown. This review summarizes some new progress in sCLU as a molecular-targeted therapy in the treatment of HCC. Methods: A systematic review of the published English-language literature about sCLU and HCC has been performed using the PubMed and bibliographic databases. Some valuable studies on sCLU in HCC progression were searched for relevant articles with the keywords: HCC, diagnosis, MDR, as molecular-targeted in treatment, and so on. Results: The incidence of the positive rate of sCLU was significantly higher in HCC tissues as compared to the surrounding tissues at mRNA or protein level, gradually increasing with tumor-nodemetastasis staging (P<0.05). Also, the abnormal level of sCLU was related to poor differentiation degree, and considered as a useful marker for HCC diagnosis or independent prognosis for patients. Hepatic sCLU could be silenced at mRNA level by specific sCLU-shRNA or by OGX-011 to inhibit cancer cell proliferation with an increase in apoptosis, cell cycle arrest, reversal MDR, alteration of cell migration or invasion behaviors, and a decrease in GSK-3β or AKT phosphorylation in vitro, as well as significant suppression of the xenograft growth by down-regulating β-catenin, p-GSK3β, and cyclinD1 expression in vivo. Conclusion: Abnormal hepatic sCLU expression should not only be a new diagnostic biomarker but also a novel promising target for inhibiting HCC growth.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Oncogenesis ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Ruize Gao ◽  
David Buechel ◽  
Ravi K. R. Kalathur ◽  
Marco F. Morini ◽  
Mairene Coto-Llerena ◽  
...  

AbstractUnderstanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.


2021 ◽  
Author(s):  
Ilaria Romito ◽  
Manuela Porru ◽  
Maria Rita Braghini ◽  
Luca Pompili ◽  
Nadia Panera ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors, alone or in combination with SOR, using in vitro and in vivo models of HCC. Methods The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was then tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. Results TAE226 emerged as the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of the nuclear interactome of FAK. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation causing an increase of histone H3 lysine 27 acetylation, counteracting its trimethylation by decreasing the nuclear amount of HDAC1/2. Conclusions Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduce HCC growth in vitro and in vivo. Our data also highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising therapeutic approaches for HCC.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3247
Author(s):  
Lingxiao Ye ◽  
Zhengxin Zhu ◽  
Xiaochuan Chen ◽  
Haoran Zhang ◽  
Jiaqi Huang ◽  
...  

Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.


2008 ◽  
Vol 74 (9) ◽  
pp. 2834-2840 ◽  
Author(s):  
Guojun Wang ◽  
Takeshi Hosaka ◽  
Kozo Ochi

ABSTRACT We recently described a new method to activate antibiotic production in bacteria by introducing a mutation conferring resistance to a drug such as streptomycin, rifampin, paromomycin, or gentamicin. This method, however, enhanced antibiotic production by only up to an order of magnitude. Working with Streptomyces coelicolor A3(2), we established a method for the dramatic activation of antibiotic production by the sequential introduction of multiple drug resistance mutations. Septuple and octuple mutants, C7 and C8, thus obtained by screening for resistance to seven or eight drugs, produced huge amounts (1.63 g/liter) of the polyketide antibiotic actinorhodin, 180-fold higher than the level produced by the wild type. This dramatic overproduction was due to the acquisition of mutant ribosomes, with aberrant protein and ppGpp synthesis activity, as demonstrated by in vitro protein synthesis assays and by the abolition of antibiotic overproduction with relA disruption. This new approach, called “ribosome engineering,” requires less time, cost, and labor than other methods and may be widely utilized for bacterial strain improvement.


Sign in / Sign up

Export Citation Format

Share Document