scholarly journals Unique Combination of Diamond–Blackfan Anemia and Lynch Syndrome in Adult Female: A Case Report

2021 ◽  
Vol 11 ◽  
Author(s):  
Aleksey S. Tsukanov ◽  
Dmitriy Y. Pikunov ◽  
Vitaly P. Shubin ◽  
Aleksey A. Barinov ◽  
Vladimir N. Kashnikov ◽  
...  

We present an extremely rare clinical case of a 38-year-old Russian patient with multiple malignant neoplasms of the uterus and colon caused by genetically confirmed two hereditary diseases: Diamond–Blackfan anemia and Lynch syndrome. Molecular genetic research carried out by various methods (NGS, Sanger sequencing, aCGH, and MLPA) revealed a pathogenic nonsense variant in the MSH6 gene: NM_000179.2: c.742C>T, p.(Arg248Ter), as well as a new deletion of the chromosome 15’s locus with the capture of 82,662,932–84,816,747 bp interval, including the complete sequence of the RPS17 gene. The lack of expediency of studying microsatellite instability in endometrial tumors using standard mononucleotide markers NR21, NR24, NR27, BAT25, BAT26 was demonstrated. The estimated prevalence of patients with combination of Diamond–Blackfan anemia and Lynch syndrome in the world is one per 480 million people.

2020 ◽  
Vol 16 (2) ◽  
pp. 123-133
Author(s):  
Рита Хусаинова ◽  
Евгения Ахтямова ◽  
Илдар Минниахметов ◽  
Регина Султанова

Currently, the methods of molecular diagnostic technologies are being developed, improved and implemented in clinical practice, ensuring the progress of medicine. The strategy of the new direction - personalized medicine is diseases prevention and treatment based on the results of molecular genetic researches at the earliest stages of disease, however, the use of genetic testing raises a number of ethical, legal and social issues that require legislative regulation. Information obtained as a result of a genetic test allows us to predict future health status and assess the risks of pathological conditions, but can also be used by third parties to discriminate and infringe on human rights, as well as contain unexpected findings, affecting the family and descendants of the examined person. Aim: analysis and synthesis of theoretical knowledge and practical experience of legal regulation of the issues of preimplantation and prenatal genetic diagnostics; the use of genomic technologies for DNA typing of hereditary diseases and current trends in the improvement of regulatory legal acts in this field of research. Methods: empirical methods of comparison, description, interpretation; theoretical methods of formal and dialectical logic. Private scientific methods are used: legal-dogmatic and the method of interpretation of legal norms. Results: the experience of legal regulation of the genetic research regime both in the countries of the world and in national legislation is studied. It is concluded that the national regulatory framework needs to improve the legal regime of DNA testing. Some ways to resolve regulatory issues of DNA testing are identified.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1429
Author(s):  
Yang Teng ◽  
Jing Yang ◽  
Guofen Zhu ◽  
Fuli Gao ◽  
Yingying Han ◽  
...  

Detailed molecular genetic research on amphibian populations has a significant role in understanding the genetic adaptability to local environments. The oriental fire-bellied toads (Bombina orientalis) were artificially introduced to Beijing from Shandong Province in 1927, and since then, this separated population went through an independent evolution. To explore the differentiation of the introduced population with its original population, this study analyzed the genetic structure of the oriental fire-bellied toad, based on the mitochondrial genome control region and six microsatellite sites. The results showed that the haplotype diversity and nucleotide diversity of the mitochondrial D-loop region partial sequences of the Beijing Botanical Garden population and the Baiwangshan population were lower than those of the Shangdong Kunyushan population. Microsatellite marker analysis also showed that the observed heterozygosity and expected heterozygosity of the Beijing populations were lower than those of the Kunyushan population. The phylogenetic trees and network diagrams of haplotypes indicated that the three populations were not genetically separated. However, the structure analysis showed a genetic differentiation and categorized the sampling individuals into Beijing and Shandong genetic clusters, which indicated a tendency for isolated evolution in the Beijing population. Although the Beijing populations showed a decline in genetic diversity, it was still at a moderate level, which could maintain the survival of the population. Thus, there is no need to reintroduce new individuals from the Kunyushan source population.


2020 ◽  
Vol 48 (2) ◽  
pp. 572-587
Author(s):  
Wenting XU ◽  
Miao ZHANG ◽  
Chen WANG ◽  
Xiongzhen LOU ◽  
Xiao HAN ◽  
...  

Phoebe bournei, a plant species endemic to China, is a precious timber tree and widely used in landscaping. This tree contains numerous secondary metabolites, underscoring its potential economic value. However, studies on this species, including molecular genetic research, remain limited. In this study, both a somatic embryogenesis (SE) technical system and Agrobacterium-mediated genetic transformation were successfully employed in P. bournei for the first time. The SE technical system was constructed using immature embryos as original material. The primary embryo and embryonic callus induction rates were 30.66% and 41.67%, respectively. The highest rate of embryonic callus proliferation was 3.84. The maximum maturity coefficient and germination rate were 53.44/g and 39%, respectively. Agrobacterium-mediated genetic transformation was performed using the SE technical system, and the highest transformation rate was 11.24%. The results presented here are the first to demonstrate an efficient approach to achieve numerous P. bournei plantlets, which serves as the basis for artificial cultivation and resource conservation. Furthermore, the genetic transformation platform constructed in this study will facilitate assessment of gene function and molecular regulation.


1998 ◽  
Vol 11 (3-4) ◽  
pp. 391-395 ◽  
Author(s):  
Rivka Carmi ◽  
Khalil Elbedour ◽  
Dahlia Wietzman ◽  
Val Sheffield ◽  
Ilana Shoham-Vardi

The ArgumentThe remarkable progress in modern genetic technology enables the identification of genes causing devastating diseases and thereby the development of tools for prenatal diagnosis and carrier detection. To implement the results of genetic research in traditional societies, where genetic diseases are more prevalent due to inbreeding, necessitates a culturally appropriate approach that also promotes traditional and societal values important to the relevant community. This paper presents our experience with implementing the results of modern genetic research among the traditional community of the Negev Bedouin of Israel. Although the benefit of using those results for the prevention of genetic diseases seems obvious, successful implementation relies on a carefully designed educational program aimed at changing culturally related attitudes and perceptions. Such a program should attend to the needs of the community and be sensitive to its traditional values.


2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Florina Erbeli ◽  
Marianne Rice ◽  
Silvia Paracchini

Dyslexia, a specific reading disability, is a common (up to 10% of children) and highly heritable (~70%) neurodevelopmental disorder. Behavioral and molecular genetic approaches are aimed towards dissecting its significant genetic component. In the proposed review, we will summarize advances in twin and molecular genetic research from the past 20 years. First, we will briefly outline the clinical and educational presentation and epidemiology of dyslexia. Next, we will summarize results from twin studies, followed by molecular genetic research (e.g., genome-wide association studies (GWASs)). In particular, we will highlight converging key insights from genetic research. (1) Dyslexia is a highly polygenic neurodevelopmental disorder with a complex genetic architecture. (2) Dyslexia categories share a large proportion of genetics with continuously distributed measures of reading skills, with shared genetic risks also seen across development. (3) Dyslexia genetic risks are shared with those implicated in many other neurodevelopmental disorders (e.g., developmental language disorder and dyscalculia). Finally, we will discuss the implications and future directions. As the diversity of genetic studies continues to increase through international collaborate efforts, we will highlight the challenges in advances of genetics discoveries in this field.


2018 ◽  
Vol 6 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Irina Donnik ◽  
Irina Donnik ◽  
Ramil Vafin ◽  
Ramil Vafin ◽  
Aram Galstyan ◽  
...  

Molecular genetic research methods make it possible to evaluate the genetic diversity of bovine leukemia virus (BLV) and are the most informative approaches to its genetic identification. Molecular genetic research methods work well for the phylogenetic analysis of sequenced nucleotide DNA sequences of the provirus, as well as for the polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) according to the phylogenetic classification of the pathogen. The purpose of the research was to study the scientific and methodological approaches to the genetic identification of bovine leukemia virus, integrated into the molecular monitoring of infection of cattle with BLV genotypes. The authors used PCR-RFLP-genotyping and comparative phylogenetic analysis of aligned nucleotide sequences of the env gene fragment of the BLV provirus isolates to detect the genotypic affiliation of the cattle from twenty-one livestock farms of the Republic of Tatarstan. As a result, isolates of four out of ten BLV genotypes were found in the Tatarstani cattle, namely genotypes 1, 4, 7, and 8. The research involved a comparative analysis of 505 nucleotide sequences of a fragment of the BLV env gene, including those deposited in GenBank NCBI. The analysis confirms the inconsistency of several earlier PCR-RFLP typing strategies with the current approach in assessing the genotypic diversity by phylogenetic analysis. The improved strategy of PCR-RFLP genotyping of BLV corresponds with its modern phylogenetic classification. The strategy makes it possible to identify all the known genotypes of the viral pathogen. Its validity has been proved by in silico modelling of restrictogrammes and a phylogenetic analysis of the env gene fragment of 57 reference isolates of ten BLV genotypes that generate 57 genotype-associated combinations of diagnostically significant PCR-RFLP profiles.


2020 ◽  
Vol 11 (87) ◽  
Author(s):  
Zhanna Bazyliuk ◽  

The study of the human genome makes it possible to use genetic information to identify individual traits, diagnosis of diseases and forecasting and prevention of their development, promotes a personal approach when choosing treatment methods; population research, ethnogenesis and evolutionary processes. Introduction of DNA sequencing methods in domestic genetic fingerprinting will contribute to a more informative establishment of human genetic traits. The main purpose of molecular genetic research is to establish the genetic features of missing people, their relatives, to conduct paternity, to identify traces of biological origin and their identification. This article talks about the gradual development of DNA sequencing technology, which is conventionally divided into three types. The first type includes sequencing using capillary electrophoresis and pyrosequencing. The second type is high-throughput pyrosequencing, semiconductor, cyclic ligase, and the use of fluorescently labeled precursors, based on the sequencing of millions of DNA fragments simultaneously. The third stage includes methods that do not require prior sample preparation. These are methods of nanoporous sequencing, sequencing of one molecule, one-molecular sequencing. Today, each of the sequencing methods is aimed at performing different tasks. A number of methods are promising in the field of molecular-genetic examination. In world jurisprudence, sequencing is implemented mainly with the help of devices - Illumina’s, MiSeq FGx, Ion Torrent PGM from ThermoFisher and Ion S5. Research in forensic expertise of single nucleotide polymorphisms (SNP), sequencing of STR-loci and mitochondrial DNA, STR-loci and SNP-markers of the Y chromosome, will provide a high level of information, determination of human phenotypic traits, the possibility of establishing genetic traits from significantly degraded DNA. This article deals with modern problems of identification of human genetic traits and the prospect of introduction of the newest methods of sequencing for their qualitative and complete establishment.


Author(s):  
E. D. Kasyanov ◽  
G. E. Maso ◽  
A. O. Kibitov

Affective disorders (recurrent depressive disorder and bipolar affective disorder) are multifactorial and polygenic diseases, which suggests the involvement of multiple neurobiological mechanisms. The phenotype of affective disorders is a heterogeneous group of clinically similar psychopathological symptoms, which also makes it difficult to detect potential biomarkers and new therapeutic targets. To study families at high risk of developing affective disorders using both clinical and molecular genetic approaches can help to study the neurobiological basis of depressive conditions, as well as to identify endophenotypes of affective disorders. The most important criterion for an endophenotype is its heritability, which can be proved only within the framework of the family design of the study. Comprehensive clinical and molecular genetic studies based on family design have the best prospects.


Sign in / Sign up

Export Citation Format

Share Document