scholarly journals Prognostic and Predictive Value of Immune-Related Gene Pair Signature in Primary Lower-Grade Glioma Patients

2021 ◽  
Vol 11 ◽  
Author(s):  
Kunjian Lei ◽  
Jingying Li ◽  
Zewei Tu ◽  
Feng Liu ◽  
Minhua Ye ◽  
...  

Immune-related gene pairs (IRGPs) have been associated with prognosis in various cancer types, but few studies have examined their prognostic capabilities in glioma patients. Here, we gathered the gene expression and clinical profile data of primary lower-grade glioma (LGG) patients from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA, containing CGGAseq1 and CGGAseq2), the Gene Expression Omnibus (GEO: GSE16011), and Rembrandt datasets. In the TCGA dataset, univariate Cox regression was performed to detect overall survival (OS)-related IRGs, Lasso regression, and multivariate Cox regression were used to screen robust prognosis-related IRGs, and 19 IRGs were selected for the construction of an IRGP prognostic signature. All patients were allotted to high- and low-risk subgroups based on the TCGA dataset median value risk score. Validation analysis indicated that the IRGP signature returned a stable prognostic value among all datasets. Univariate and multivariate Cox regression analyses indicated that the IRG -signature could efficiently predict the prognosis of primary LGG patients. The IRGP-signature-based nomogram model was built, revealing the reliable ability of the IRGP signature to predict clinical prognosis. The single-sample gene set enrichment analysis (ssGSEA) suggested that high-risk samples contained higher numbers of immune cells but featured lower tumor purity than low-risk samples. Finally, we verified the prognostic ability of the IRGP signature using experiments performed in LGG cells. These results indicated that the IRGP signature could be regarded as a stable prognostic assessment predictor for identifying high-risk primary LGG patients.

2020 ◽  
Author(s):  
Xu Zhang ◽  
Shuai Ping ◽  
Rui Zhang ◽  
Can Li ◽  
Caibin Gao ◽  
...  

Abstract Background Lower-grade gliomas (LGG) are the prevalent primary intracerebral malignancy tumor. Increasing evidence indicated an association between immune signature and LGG prognosis. Thus, we aim to develop an immune-related gene pairs (IRGPs) signature that can predict prognosis for LGG. Method: Gene expression levels and clinical information of LGG patients (LGGs) were collected from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The two databases were divided into training cohort (n = 515) and an independent validation cohort (n = 604). IGRPs significantly associated with prognosis were selected by Cox regression. Gene set enrichment analysis and filtration were performed on IGRPs. Results Within 1991 immune genes, an 8 IRGPs signature including 15 unique genes was constructed, which had a significant association with survival. In the validation dataset, the IRGPs signature significantly stratified LGGs into low- and high-risk groups (P < 0.001), and it remained an independent prognostic factor in univariate and multivariate analyses (P < 0.001). Additionally, 26 functional pathways were filtrated through the intersection of Gene set enrichment analysis (GSEA) and gene ontology (GO) enrichment analysis. Conclusion The IGRPs signature demonstrated good prognostic value in lower-grade glioma, which may provide new insights into individual treatment for glioma patients. And the IGRPs might take effect through these filtrated 26 functional pathways.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moxuan Zhang ◽  
Yanhao Cheng ◽  
Zhengchun Xue ◽  
Qiang Sun ◽  
Jian Zhang

Abstract Background Glioma is the most common primary intracranial tumour and has a very poor prognosis. Pyroptosis, also known as inflammatory necrosis, is a type of programmed cell death that was discovered in recent years. The expression and role of pyroptosis-related genes in gliomas are still unclear. Methods In this study, we analysed the RNA-seq and clinical information of glioma patients from The Cancer Genome Atlas (TCGA) database and Chinese Glioma Genome Atlas (CGGA) database. To investigate the prognosis and immune microenvironment of pyroptosis-related genes in gliomas, we constructed a risk model based on the TCGA cohort. The patients in the CGGA cohort were used as the validation cohort. Results In this study, we identified 34 pyroptosis-related differentially expressed genes (DEGs) in glioma. By clustering these DEGs, all glioma cases can be divided into two clusters. Survival analysis showed that the overall survival time of Cluster 1 was significantly higher than that of Cluster 2. Using the TCGA cohort as the training set, a 10-gene risk model was constructed through univariate Cox regression analysis and LASSO Cox regression analysis. According to the risk score, gliomas were divided into high-risk and low-risk groups. Survival analysis showed that the low-risk group had a longer survival time than the high-risk group. The above results were verified in the CGGA validation cohort. To verify that the risk model was independent of other clinical features, the distribution and the Kaplan-Meier survival curves associated with risk scores were performed. Combined with the characteristics of the clinical cases, the risk score was found to be an independent factor predicting the overall survival of patients with glioma. The analysis of single sample Gene Set Enrichment Analysis (ssGSEA) showed that compared with the low-risk group, the high-risk group had immune cell and immune pathway activities that were significantly upregulated. Conclusion We established 10 pyroptosis-related gene markers that can be used as independent clinical predictors and provide a potential mechanism for the treatment of glioma.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Pingfei Tang ◽  
Weiming Qu ◽  
Dajun Wu ◽  
Shihua Chen ◽  
Minji Liu ◽  
...  

Background. Acidosis in the tumor microenvironment (TME) is involved in tumor immune dysfunction and tumor progression. We attempted to develop an acidosis-related index (ARI) signature to improve the prognostic prediction of pancreatic carcinoma (PC). Methods. Differential gene expression analyses of two public datasets (GSE152345 and GSE62452) from the Gene Expression Omnibus database were performed to identify the acidosis-related genes. The Cancer Genome Atlas–pancreatic carcinoma (TCGA-PAAD) cohort in the TCGA database was set as the discovery dataset. Univariate Cox regression and the Kaplan–Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish the optimal model. The tumor immune infiltrating pattern was characterized by the single-sample gene set enrichment analysis (ssGSEA) method, and the prediction of immunotherapy responsiveness was conducted using the tumor immune dysfunction and exclusion (TIDE) algorithm. Results. We identified 133 acidosis-related genes, of which 37 were identified as prognostic genes by univariate Cox analysis in combination with the Kaplan–Meier method ( p values of both methods < 0.05). An acidosis-related signature involving seven genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and GBP2) was developed in TCGA-PAAD and further validated in GSE62452. Patients in the acidosis-related high-risk group consistently showed poorer survival outcomes than those in the low-risk group. The 5-year AUCs (areas under the curve) for survival prediction were 0.738 for TCGA-PAAD and 0.889 for GSE62452, suggesting excellent performance. The low-risk group in TCGA-PAAD showed a higher abundance of CD8+ T cells and activated natural killer cells and was predicted to possess an elevated proportion of immunotherapeutic responders compared with the high-risk counterpart. Conclusions. We developed a reliable acidosis-related signature that showed excellent performance in prognostic prediction and correlated with tumor immune infiltration, providing a new direction for prognostic evaluation and immunotherapy management in PC.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jingwei Zhao ◽  
Le Wang ◽  
Bo Wei

Energy metabolic processes play important roles for tumor malignancy, indicating that related protein-coding genes and regulatory upstream genes (such as long noncoding RNAs (lncRNAs)) may represent potential biomarkers for prognostic prediction. This study will develop a new energy metabolism-related lncRNA-mRNA prognostic signature for lower-grade glioma (LGG) patients. A GSE4290 dataset obtained from Gene Expression Omnibus was used for screening the differentially expressed genes (DEGs) and lncRNAs (DELs). The Cancer Genome Atlas (TCGA) dataset was used as the prognosis training set, while the Chinese Glioma Genome Atlas (CGGA) was for the validation set. Energy metabolism-related genes were collected from the Molecular Signatures Database (MsigDB), and a coexpression network was established between energy metabolism-related DEGs and DELs to identify energy metabolism-related DELs. Least absolute shrinkage and selection operator (LASSO) analysis was performed to filter the prognostic signature which underwent survival analysis and nomogram construction. A total of 1613 DEGs and 37 DELs were identified between LGG and normal brain tissues. One hundred and ten DEGs were overlapped with energy metabolism-related genes. Twenty-seven DELs could coexpress with 67 metabolism-related DEGs. LASSO regression analysis showed that 9 genes in the coexpression network were the optimal signature and used to construct the risk score. Kaplan-Meier curve analysis showed that patients with a high risk score had significantly worse OS than those with a low risk score (TCGA: HR=3.192, 95%CI=2.182‐4.670; CGGA: HR=1.922, 95%CI=1.431‐2.583). The predictive accuracy of the risk score was also high according to the AUC of the ROC curve (TCGA: 0.827; CGGA: 0.806). Multivariate Cox regression analyses revealed age, IDH1 mutation, and risk score as independent prognostic factors, and thus, a prognostic nomogram was established based on these three variables. The excellent prognostic performance of the nomogram was confirmed by calibration and discrimination analyses. In conclusion, our findings provided a new biomarker for the stratification of LGG patients with poor prognosis.


Author(s):  
Xianghong Zhou ◽  
Shi Qiu ◽  
Di Jin ◽  
Kun Jin ◽  
Xiaonan Zheng ◽  
...  

Abstract Background: Papillary renal carcinoma (PRCC) is one of the important subtypes of kidney cancer, with a high degree of heterogeneity. At present, there is still a lack of robust and accurate biomarkers for the diagnosis, prognosis and treatment selection of PRCC. Considering the important role of tumor immunity in PRCC, we aim to construct a signature based on immune-related gene pairs (IRGPs) to estimate the prognostic of patients with PRCC.Methods: We obtained gene expression profiling and clinical information of patients with PRCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), which were divided into discovery and validation cohorts, respectively. The immune-related genes in the samples were used to construct gene pairs, and the immune-related genes pairs (IRGPs) with robust impact for overall survival (OS) were screened out to construct the signature by univariate analysis, multivariate Cox analysis, and least absolute shrinkage and selection operator (Lasso) analysis. Then we verified the prognostic role of the signature, and assessed the relationship between this signature with tumor immune infiltration and functional pathways.Results: A total of 315 patients were included in our study, and divided to discovery (n=287) and validation (n=28) cohorts. Finally, we selected 14 IRGPs with a panel of 22 unique genes to construct the prognostic signature. According to the signature, we stratified patients into high-risk group and low-risk group. In both discovery and validation cohorts, the results of Kaplan-Meier analysis showed that there were significant differences in OS between the two groups (p<0.001). Combined with multiple clinical pathological factors, the results of multivariate analyses confirmed that this signature was an independent predictor of OS (HR, 3.548; 95%CI, 2.096−6.006; p<0.001). The results of immune infiltration analysis demonstrated that the abundance of multiple tumor-infiltration lymphocytes such as CD8+ T cells, Tregs, and T follicular cell helper were significantly higher in the high-risk group. Functional analysis showed that multiple immune-related signaling pathways were enriched in the high-risk group.Conclusions: We successfully established an individualized prognostic immune-related gene pairs signature, which can accurately and independently predict the OS of patients with PRCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Liping Lv ◽  
Ping Ma ◽  
Yangyang Zhang ◽  
Jiang Deng ◽  
...  

BackgroundPancreatic adenocarcinoma (PAAD) spreads quickly and has a poor prognosis. Autophagy research on PAAD could reveal new biomarkers and targets for diagnosis and treatment.MethodsAutophagy-related genes were translated into autophagy-related gene pairs, and univariate Cox regression was performed to obtain overall survival (OS)-related IRGPs (P&lt;0.001). LASSO Cox regression analyses were performed to construct an autophagy-related gene pair (ARGP) model for predicting OS. The Cancer Genome Atlas (TCGA)-PAAD cohort was set as the training group for model construction. The model predictive value was validated in multiple external datasets. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Tumor microenvironments and immune infiltration were compared between low- and high-risk groups with ESTIMATE and CIBERSORT. Differentially expressed genes (DEGs) between the groups were further analyzed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and used to identify potential small-molecule compounds in L1000FWD.ResultsRisk scores were calculated as follows: ATG4B|CHMP4C×(-0.31) + CHMP2B|MAP1LC3B×(0.30) + CHMP6|RIPK2 ×(-0.33) + LRSAM1|TRIM5×(-0.26) + MAP1LC3A|PAFAH1B2×(-0.15) + MAP1LC3A|TRIM21×(-0.08) + MET|MFN2×(0.38) + MET|MTDH×(0.47) + RASIP1|TRIM5×(-0.23) + RB1CC1|TPCN1×(0.22). OS was significantly shorter in the high-risk group than the low-risk group in each PAAD cohort. The ESTIMATE analysis showed no difference in stromal scores but a significant difference in immune scores (p=0.0045) and ESTIMATE scores (p=0.014) between the groups. CIBERSORT analysis showed higher naive B cell, Treg cell, CD8 T cell, and plasma cell levels in the low-risk group and higher M1 and M2 macrophage levels in the high-risk group. In addition, the results showed that naive B cells (r=-0.32, p&lt;0.001), Treg cells (r=-0.31, p&lt;0.001), CD8 T cells (r=-0.24, p=0.0092), and plasma cells (r=-0.2, p&lt;0.026) were statistically correlated with the ARGP risk score. The top 3 enriched GO-BPs were signal release, regulation of transsynaptic signaling, and modulation of chemical synaptic transmission, and the top 3 enriched KEGG pathways were the insulin secretion, dopaminergic synapse, and NF-kappa B signaling pathways. Several potential small-molecule compounds targeting ARGs were also identified.ConclusionOur results demonstrate that the ARGP-based model may be a promising prognostic indicator for identifying drug targets in patients with PAAD.


2020 ◽  
Author(s):  
Zihao Wang ◽  
Xuan Xiang ◽  
Xiaoshan Wei ◽  
Linlin Ye ◽  
Yiran Niu ◽  
...  

Abstract Background. Lung squamous cell carcinoma (LUSC) is one of the subtypes of non-small-cell lung cancer (NSCLC) and accounts for approximately 20 to 30% of all lung cancers.Methods. In this study, we developed an immune-related gene pair index (IRGPI) for early-stage LUSC from 3 public LUSC data sets, including The Cancer Genome Atlas LUSC cohort and Gene Expression Omnibus data sets, and explored whether IRGPI could act as a prognostic marker to identify patients with early-stage LUSC at high risk.Results. IRGPI was constructed by 68 gene pairs consisting of 123 unique immune-related genes from TCGA LUSC cohort. In the derivation cohort, the hazard of death among high-risk group was 10.51 times that of the low-risk group (HR, 10.51; 95%CI, 6.96-15.86; p<0.001). The hazard of death among the high-risk group was 2.26 times that of the low-risk group (HR, 2.26; 95%CI, 1.2-4.25; p=0.009) in the GSE37745 validation cohort and was 3.2 times that of low-risk group (HR, 3.2; 95%CI, 0.98-10.4; p=0.042) in the GSE41271 validation cohort. The infiltrations of CD8+ T cells and T follicular helper cells were lower in the high-risk group, as compared with the low-risk group in the TCGA cohort (6.94% vs 9.63%, p=0.004; 2.15% vs 3%, p=0.002, respectively). The infiltrations of neutrophils, activated mast cells and monocytes were higher in the high-risk group, as compared with the low-risk group in the TCGA cohort (1.63% vs 0.72%, p=0.001; 1.64% vs 1.02%, p=0.007; 0.57% vs 0.35%, p=0.041, respectively).Conclusions. IRGPI is a significant prognostic biomarker for predicting overall survival in early-stage LUSC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Hui Xiong ◽  
Hui Gao ◽  
Jinding Hu ◽  
Yun Dai ◽  
Hanbo Wang ◽  
...  

Compelling evidence indicates that immune function is correlated with the prognosis of bladder cancer (BC). Here, we aimed to develop a clinically translatable immune-related gene pairs (IRGPs) prognostic signature to estimate the overall survival (OS) of bladder cancer. From the 251 prognostic-related IRGPs, 37 prognostic-related IRGPs were identified using LASSO regression. We identified IRGPs with the potential to be prognostic markers. The established risk scores divided BC patients into high and low risk score groups, and the survival analysis showed that risk score was related to OS in the TCGA-training set ( p < 0.001 ; HR = 7.5 [5.3, 10]). ROC curve analysis showed that the AUC for the 1-year, 3-year, and 5-year follow-up was 0.820, 0.883, and 0.879, respectively. The model was verified in the TCGA-testing set and external dataset GSE13507. Multivariate analysis showed that risk score was an independent prognostic predictor in patients with BC. In addition, significant differences were found in gene mutations, copy number variations, and gene expression levels in patients with BC between the high and low risk score groups. Gene set enrichment analysis showed that, in the high-risk score group, multiple immune-related pathways were inhibited, and multiple mesenchymal phenotype-related pathways were activated. Immune infiltration analysis revealed that immune cells associated with poor prognosis of BC were upregulated in the high-risk score group, whereas immune cells associated with a better prognosis of BC were downregulated in the high-risk score group. Other immunoregulatory genes were also differentially expressed between high and low risk score groups. A 37 IRGPs-based risk score signature is presented in this study. This signature can efficiently classify BC patients into high and low risk score groups. This signature can be exploited to select high-risk BC patients for more targeted treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoxia Tong ◽  
Xiaofei Qu ◽  
Mengyun Wang

BackgroundCutaneous melanoma (CM) is one of the most aggressive cancers with highly metastatic ability. To make things worse, there are limited effective therapies to treat advanced CM. Our study aimed to investigate new biomarkers for CM prognosis and establish a novel risk score system in CM.MethodsGene expression data of CM from Gene Expression Omnibus (GEO) datasets were downloaded and analyzed to identify differentially expressed genes (DEGs). The overlapped DEGs were then verified for prognosis analysis by univariate and multivariate COX regression in The Cancer Genome Atlas (TCGA) datasets. Based on the gene signature of multiple survival associated DEGs, a risk score model was established, and its prognostic and predictive role was estimated through Kaplan-Meier (K-M) analysis and log-rank test. Furthermore, the correlations between prognosis related genes expression and immune infiltrates were analyzed via Tumor Immune Estimation Resource (TIMER) site.ResultsA total of 103 DEGs were obtained based on GEO cohorts, and four genes were verified in TCGA datasets. Subsequently, four genes (ADAMDEC1, GNLY, HSPA13, and TRIM29) model was developed by univariate and multivariate Cox regression analyses. The K-M plots showed that the high-risk group was associated with shortened survival than that in the low-risk group (P &lt; 0.0001). Multivariate analysis suggested that the model was an independent prognostic factor (high-risk vs. low-risk, HR= 2.06, P &lt; 0.001). Meanwhile, the high-risk group was prone to have larger breslow depth (P&lt; 0.001) and ulceration (P&lt; 0.001).ConclusionsThe four-gene risk score model functions well in predicting the prognosis and treatment response in CM and will be useful for guiding therapeutic strategies for CM patients. Additional clinical trials are needed to verify our findings.


Sign in / Sign up

Export Citation Format

Share Document