scholarly journals Downregulation of SOX2-OT Prevents Hepatocellular Carcinoma Progression Through miR-143-3p/MSI2

2021 ◽  
Vol 11 ◽  
Author(s):  
Hongfeng Zhao ◽  
Minping Bi ◽  
Meng Lou ◽  
Xiaowei Yang ◽  
Liwen Sun

ObjectiveLncRNA SOX2-OT is involved in a variety of cancers. This study explored the effect of lncRNA SOX2-OT on hepatocellular carcinoma (HCC) cells.MethodsSOX2-OT expressions were detected in HCC tissues and normal tissues, normal cells, and HCC cells. The relationship between SOX2-OT and prognosis was analyzed by TCGA. After SOX2-OT expression was inhibited using siRNA, HCC cell malignant behaviors were evaluated. The subcellular localization of SOX2-OT in HCC cells was predicted and analyzed. The binding relationships among SOX2-OT, miR-143-3p, and MSI2 were analyzed by bioinformatics website, dual-luciferase assay, and RNA pull-down assay. The effect of miR-143-3p and MSI2 on the regulation of SOX2-OT on biological behaviors of HCC cells was confirmed by functional rescue experiments. The effect of SOX2-OT on the tumorigenicity of HCC was evaluated by subcutaneous tumorigenesis in nude mice.ResultsSOX2-OT was highly expressed in HCC cells and tissues. The prognosis was poor in HCC patients with high SOX2-OT expression. Downregulating SOX2-OT inhibited HCC cell malignant behaviors. SOX2-OT bound to miR-143-3p to promote MSI2 expression. Downregulating miR-143-3p or upregulating MSI2 averted the role of si-SOX2-OT in HCC cells. Nude mouse subcutaneous tumorigenesis showed that SOX2-OT downregulation decreased the tumorigenicity of HCC, and affected the levels of miR-143-3p and MSI2 mRNA in tumor tissues.ConclusionSOX2-OT inhibited the targeted inhibition of miR-143-3p on MSI2 through competitively binding to miR-143-3p, thus promoting MSI2 expression and proliferation, invasion, and migration of HCC cells.

2019 ◽  
Vol 68 (3) ◽  
pp. 770-775
Author(s):  
Yi Zhang ◽  
Jianjun Wang ◽  
Hongling Su

BackgroundIn this study, we aimed to explore the potential involvement of miR-3150b in hepatocellular carcinoma (HCC) carcinogenesis.MethodsThe expression of miR-3150b and Golgi phosphoprotein 3 (GOLPH3) was determined in HCC cell lines. Cell proliferation, migration and invasion were estimated by Cell Counting Kit-8, wound healing and Transwell assays. The association between miR-3150b and GOLPH3 was verified by luciferase assay.ResultsMiR-3150b was downregulated, while GOLPH3 was remarkably upregulated in HCC cells. Furthermore, miR-3150b inhibited HCC cell proliferation, migration and invasion. MiR-3150b directly targeted and negatively regulated GOLPH3.ConclusionMiR-3150b suppressed HCC cell proliferation, invasion and migration by targeting GOLPH3.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qi Zhang ◽  
Xinqi Zhang ◽  
Weiguo Dong

AbstractIt has been proved that TRAFs family proteins played malfunctioning roles in the development of human cancers. TRAF7 is the last one of TRAFs family proteins to be found, which was demonstrated to be involved in a serious of cancers development. In this study, we systematically investigated the molecular mechanisms of TRAF7 in facilitating hepatocellular carcinoma (HCC). We discovered that TRAF7 was overexpressed in tumor tissues and the increased TRAF7 expression was closely associated with tumor size, histologic grade, TNM stage and poor prognostication. TRAF7 overexpression repressed cell apoptosis and promoted cell proliferation, invasion and migration, whereas knockdown of TRAF7 in HCC cells had totally opposite effects. Besides, we identified the interaction between TRAF7 and P53 in HCC and demonstrated that TRAF7 promoted ubiquitin-proteasome mediated degradation of P53 at K48 site. The rescue assays further proved that the function of TRAF7 in inhibiting apoptosis and promoting tumor development was depended on P53 in HCC. Overall, this work identified that TARF7 promoted tumorigenesis by targeted degradation P53 for ubiquitin-mediated proteasome pathway. Targeting the TRAF7-P53 axis may provide new insights in the pathogenesis of HCC, and pave the way for developing novel strategies for HCC prevention and treatment.


2020 ◽  
Author(s):  
Guangzhen Ma ◽  
Jirong Chen ◽  
Tiantian Wei ◽  
Jia Wang ◽  
Wenshan Chen

Abstract Background Forkhead box A2 (FOXA2) is a transcriptional activator for liver-specific genes. Hepatocellular carcinoma (HCC) is a prevalent fetal malignancy across the globe. This work focused on the role of FOXA2 in HCC cell migration and invasion and the involving molecules. Methods FOXA2 expression in HCC tissues and cells was determined using RT-qPCR. Altered expression of FOXA2 was introduced to identify its role in HCC cell migration and invasion using Transwell assays. The potential target microRNA (miRNA) of FOXA2 was predicted via online prediction and validated through a ChIP assay, and the mRNA target of miRNA-103a-3p was predicted and confirmed through a luciferase assay. The roles of miR-103a-3p and GREM2 in HCC cell invasion and migration were determined, and the downstream molecules mediated by GREM2 were analyzed. Results FOXA2 and GREM2 were poorly expressed while miR-103a-3p was abundant in HCC tissues and cells. Overexpression of FOXA2 or GREM2 suppressed migration and invasion of HepG2 and SK-HEP-1 cells, while up-regulation of miR-103a-3p led to reverse trends. FOXA2 transcriptionally suppressed miR-103a-3p to increase GREM2 expression, and silencing of GREM2 partially blocked the inhibitory effects of FOXA2 on cell migration and invasion. GREM2 increased LATS2 activity and YAP phosphorylation and degradation. Conclusion This study evidenced that FOXA2 inhibits migration and invasion potentials of HCC cell lines through suppressing miR-103a-3p transcription. The following upregulation of GREM2 plays key roles in migration inhibition by promoting LATS2 activity and YAP phosphorylation. This study may offer new insights into HCC treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Kai Chen ◽  
Zhuqing Zhang ◽  
Aijun Yu ◽  
Jian Li ◽  
Jinlong Liu ◽  
...  

Objective. DLGAP1-AS2 has been characterized as an oncogenic lncRNA in glioma. Our preliminary microarray analysis revealed the altered expression of DLGAP1-AS2 in hepatocellular carcinoma (HCC), but the role of DLGAP1-AS2 in HCC remains unknown. Method. Expression of DLGAP1-AS2 and miR-154-5p in paired HCC and nontumor tissues from 62 HCC patients was determined by RT-qPCR. The 62 HCC patients were followed up for 5 years to analyze the prognostic value of DLGAP1-AS2 for HCC. DLGAP1-AS2 knockdown and miR-154-5p overexpression was achieved in HCC cells to study the relationship between them. Methylation of miR-154-5p was analyzed by methylation-specific PCR. Cell proliferation was analyzed by CCK-8 assay. Results. DLGAP1-AS2 was upregulated in HCC and predicted poor survival. miR-154-5p was downregulated in HCC and inversely correlated with DLGAP1-AS2. In HCC cells, DLGAP1-AS2 knockdown resulted in the upregulation of miR-154-5p expression and decreased methylation of miR-154-5p gene. Transwell assay showed that DLGAP1-AS2 knockdown and miR-154-5p overexpression inhibited cell invasion and migration, and the combination of LGAP1-AS2 knockdown and miR-154-5p overexpression showed stronger effects. Conclusion. DLGAP1-AS2 knockdown may inhibit HCC cell migration and invasion by regulating miR-154-5p methylation.


2020 ◽  
Author(s):  
Kai Chen ◽  
Zhuqing Zhang ◽  
Aijun Yu ◽  
Jian Li ◽  
Jinlong Liu ◽  
...  

Abstract Background:DLGAP1-AS2 has been characterized as an oncogenic lncRNA in glioma. This study was performed to explore the role of DLGAP1-AS2 in hepatocellular carcinoma (HCC). Methods:Expression of DLGAP1-AS2 and miR-154-5p in paired HCC and non-tumor tissues from 62 HCC patients was determined by RT-qPCR. The 62 HCC patients were followed up for 5 years to analyze the prognostic value of DLGAP1-AS2 for HCC. DLGAP1-AS2 siRNA silencing and miR-154-5p overexpression was achieved in HCC cells to study the relationship between them. Methylation of miR-154-5p was analyzed by methylation-specific PCR. Cell proliferation was analyzed by CCK-8 assay.Results: DLGAP1-AS2 was upregulated in HCC and predicted poor survival. MiR-154-5p was downregulated in HCC and inversely correlated with DLGAP1-AS2. In HCC cells, DLGAP1-AS2 siRNA silencing resulted in the upregulation of miR-154-5p and decreased methylation of miR-154-5p gene. Transwell assay showed that, DLGAP1-AS2 siRNA silencing and miR-154-5p overexpression inhibited cell invasion and migration, and the combination of LGAP1-AS2 siRNA silencing and miR-154-5p overexpression showed stronger effects.Conclusion: DLGAP1-AS2 siRNA silencing may inhibit HCC cell migration and invasion by up-regulating miR-154-5p through methylation.


Pharmacology ◽  
2017 ◽  
Vol 100 (5-6) ◽  
pp. 269-282 ◽  
Author(s):  
Bin Xu ◽  
Tangpeng Xu ◽  
Huali Liu ◽  
Qian Min ◽  
Shidong Wang ◽  
...  

Objective: To verify that miR-490-5p could influence hepatocellular carcinoma (HCC) cells' proliferation, invasion, cycle, and apoptosis by targeting BUB1. Methods: Quantitative real time-PCR (QRT-PCR) was used to determine the miR-490-5p expression. Immunohistochemistry, qRT-PCR, and Western blot were employed to detect BUB1 and transforming growth factor-beta (TGFβ/Smad) signaling-related proteins expression in hepatic tissues and cells. The luciferase assay was used to confirm the targeting relationship between miR-490-5p and BUB1. The Cell Counting Kit-8, colony formation, Transwell invasion, scratch healing assays, and flow cytometry analysis were conducted to evaluate HCC cells proliferation, invasion, migration, and apoptosis alteration after transfection. Results: In HCC tissues and cells, lower expression of miR-490-5p was detected, while BUB1 was overexpressed than controls. The upregulation of miR-490-5p inhibited BUB1 expression and the overexpression of miR-490-5p or the under-expression of BUB1 inhibited HCC cells proliferation, migration, invasion, and increased the apoptosis rate. Conclusion: MiR-490-5p could regulate TGFβ/Smad signaling pathways by inhibiting BUB1, which could then inhibit HCC cells proliferation, invasion, and migration as well as decrease cell viability and increase apoptosis.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2020 ◽  
Vol 21 (21) ◽  
pp. 8303
Author(s):  
Min Hee Yang ◽  
Seung Ho Baek ◽  
Jae-Young Um ◽  
Kwang Seok Ahn

Ginkgolide C (GGC) derived from Ginkgo biloba, has been reported to exhibit various biological functions. However, the anti-neoplastic effect of GGC and its mechanisms in liver cancer have not been studied previously. Hepatocyte growth factor (HGF)/c-mesenchymal–epithelial transition receptor (c-Met) pathway can regulate tumor growth and metastasis in hepatocellular carcinoma (HCC) cells. This study aimed to evaluate the anti-neoplastic effect of GGC against HCC cells and we observed that GGC inhibited HGF-induced c-Met and c-Met downstream oncogenic pathways, such as PI3K/Akt/mTOR and MEK/ERK. In addition, GGC also suppressed the proliferation of expression of diverse tumorigenic proteins (Bcl-2, Bcl-xL, Survivin, IAP-1, IAP-2, Cyclin D1, and COX-2) and induced apoptosis. Interestingly, the silencing of c-Met by small interfering RNA (siRNA) mitigated c-Met expression and enhanced GGC-induced apoptosis. Moreover, it was noted that GGC also significantly reduced the invasion and migration of HCC cells. Overall, the data clearly demonstrate that GGC exerts its anti-neoplastic activity through modulating c-Met phosphorylation and may be used as an effective therapy against HCC.


2016 ◽  
Vol 38 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Jian-Jun Sun ◽  
Guo-Yong Chen ◽  
Zhan-Tao Xie

Background/Aims: A growing body of evidence supports the notion that MicroRNAs (miRNAs) function as key regulators of tumorigenesis. In the present study, the expression and roles of miRNA-361-5p were explored in hepatocellular carcinoma (HCC). Methods: Quantitative real-time PCR was used to detect the expression miR-361-5p in HCC tissues and pair-matched adjacent normal tissues. MTT and BrdU assays were used to identify the role of miR-361-5p in the regulation of proliferation and invasion of HCC cells. Using bioinformatics analysis, luciferase reporter assays and Western blots were used to identify the molecular target of miR-361-5p. nude mice were used to detect the anti-tumor role of miR-361-5p in vivo. Results: miR-361-5p was down-regulated in HCC tissues in comparison to adjacent normal tissues, due to hypermethylation at its promoter region. Overexpression of miR-361-5p suppressed proliferation and invasion of HCC cells. Chemokine (C-X-C Motif) receptor 6 (CXCR6) was identified as a target of miR-361-5p. Indeed, knockdown of CXCR6 photocopied, while overexpression of CXCR6 largely attenuated the anti-proliferative effect of miR-361-5p. More importantly, in vivo studies demonstrated that forced expression of miR-361-5p significantly inhibited tumor growth in the nude mice. Conclusion: Our results indicate that miR-361-5p acts as a tumor suppressor and might serve as a novel therapeutic target for the treatment of HCC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qiu-ting Li ◽  
Meng-jun Qiu ◽  
Sheng-li Yang ◽  
Xiefan Fang ◽  
Xiao-xiao He ◽  
...  

Background. The prognosis of patients with hepatocellular carcinoma (HCC) is poor, with 60% to 70% of patients developing recurrence and metastasis within five years of radical resection. Alpha-fetoprotein (AFP) plays a significant role in predicting the recurrence and metastasis of HCC after surgery. However, its role in modulating tumor immunity has not been investigated. Our objective was to examine the effect of AFP on the expression of B7 family and activation of the NF-κB (P65) pathway in HCC. Methods. We generated human hepatoma SMMC-7721 cell lines with or without recombinant AFP transfection (AFPup and control groups). Colony formation assay, Transwell invasion assay, and wound healing assay were used to detect the function of AFP. Liver cancer xenografts were made in BALB/c nude male mice (N = 6 per group). After 28 days of inoculation, the expression of immune genes in the HCC tissues, including PD-L (B7-H1), B7-H3, B7-H4, and P65, was evaluated by quantitative real-time PCR (qPCR) and western blot. In addition, immunofluorescence was used to determine the subcellular localization of the P65 protein, a key factor in the NF-κB pathway. An online HCC patients’ dataset was also used to detect the connection between AFP and P65. Results. Overexpression of AFP could enhance proliferation, invasion, and migration of HCC cells. Both qPCR and western blot results demonstrated that the expressions of PD-L1, B7-H4, and P65 were significantly higher in the AFP group compared to the controls (P<0.05). Immunofluorescence results indicated that the majority of the P65 protein was located in the cytoplasm in the control group but was translocated to the nucleus in the AFPup group. The Spearman correlation coefficient confirms that AFP has a positive correlation with P65 in HCC patients (R = 0.33, P=0.05). Conclusion. AFP could enhance proliferation, invasion, and migration in HCC cells. The upregulation of AFP would increase the PD-L1 and B7-H4 mRNA and protein expression in HCC tissues through the upregulation and activation of the P65 protein.


Sign in / Sign up

Export Citation Format

Share Document