scholarly journals MRE11 and UBR5 Co-Operate to Suppress RNF168-Mediated Fusion of Dysfunctional Telomeres

2021 ◽  
Vol 11 ◽  
Author(s):  
Yongjian Tang ◽  
Joydeep Mukherjee ◽  
Russell O. Pieper

TRF2 is part of the shelterin complex that hides telomeric DNA ends and prevents the activation of the cNHEJ pathway that can lead to chromosomal fusion. TRF2, however, also actively suppresses the cNHEJ pathway by recruiting two proteins, MRE11 and UBR5. MRE11 binds BRCC3, which in turn deubiquitinates γH2AX deposited at exposed telomeric DNA ends and limits RNF168 recruitment to the telomere. UBR5, in contrast directly ubiquitinates and destroys RNF168. The loss of telomeric RNF168 in turn blocks the subsequent recruitment of 53BP1 and prevents the cNHEJ-mediated fusion of chromosomes with exposed telomeric DNA ends. Although MRE11 and UBR5 are both involved in the control of telomeric RNF168 levels and the chromosome fusion process, their relative contributions have not been directly addressed. To do so we genetically suppressed MRE11 and UBR5 alone or in combination in glioma cell lines which we previously showed contained dysfunctional telomeres that were dependent on TRF2 for suppression of telomeric fusion and monitored the effects on events associated with telomere fusion. We here show that while suppression of either MRE11 or UBR5 alone had minimal effects on RNF168 telomeric accumulation, 53BP1 recruitment, and telomeric fusion, their combined suppression led to significant increases in RNF168 and 53BP1 telomeric recruitment and telomeric fusion and eventually cell death, all of which were reversible by suppression of RNF168 itself. These results show that MRE11 and UBR5 co-operate to suppress fusion at dysfunctional telomeres.

2002 ◽  
Vol 13 (3) ◽  
pp. 1-11 ◽  
Author(s):  
Jay Jaganathan ◽  
Joshua H. Petit ◽  
Barbara E. Lazio ◽  
Satyendra K. Singh ◽  
Lawrence S. Chin

Object Tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine family, which mediates programmed cell death (apoptosis) selectively in tumor cells. The selective tumoricidal activity of TRAIL is believed to be modulated by agonistic (DR4 and DR5) and antagonistic receptors (DcR1 and DcR2), which appear to compete for ligand binding. Because TRAIL is expressed in a wide range of tissues, including brain, kidney, and spleen, and seems consistently to induce cell death in tumor cells, the cytokine has been identified as a promising approach for selectively inducing tumor cell death. In this study, the authors examine the importance of TRAIL's receptors in both its selectivity for tumor cells and its ability to induce apoptosis. Methods The authors first examined sensitivity to TRAIL and expression of TRAIL receptors in four established and four primary cultured glioma cell lines by using viability and fluorescent apoptosis assays. They then evaluated DR5 expression and JNK, caspase 3, and caspase 7 activation by conducting immunoblot analyses. Reverse transcriptase–polymerase chain reaction (RT-PCR) was performed to study expression of DR4, DR5, DcR1, and DcR2. The DR5 transcripts from one TRAIL-sensitive, one partially TRAIL-resistant, and one TRAIL-resistant cell line were subsequently sequenced. The expression of TRAIL receptors in normal and glial brain tumor pathological specimens were then compared using immunohistochemistry. Finally, to study the direct effects of DR5 on glioma cells, the authors conducted transient and stable transfections of the fulllength DR5 transcript into glioma cells with and without preestablished overexpression of the antiapoptotic gene bcl-2. The established glioma cell lines T98G and U87MG, and all primary cell lines, were apoptotic at greater than or equal to 100 ng/ml TRAIL. The A172 cells, by contrast, were susceptible only with cycloheximide, whereas U373MG cells were not susceptible to TRAIL. The JNK, caspase 3, and caspase 7 activity evaluated after treatment with TRAIL showed that TRAIL-sensitive cell lines exhibited downstream caspase activation, whereas TRAIL-resistant cells did not. The DR5 sequences in T98G, A172, and U373MG cell lines were identical to published sequences despite these differences in sensitivity to TRAIL. The RT-PCR performed on extracts from the eight glioma cell lines showed that all expressed DR5. Immunohistochemistry revealed ubiquitous expression of DR5 in glioma specimens, with an associated lack of decoy receptor expression. Normal brain specimens, by contrast, stained positive for both DR5 and DcR1. Overexpression of DR5 under both transfection conditions resulted in cell death in all three cell lines. The previously seen resistance of U373 cells to TRAIL was not observed. Apoptotic cell death was confirmed using DNA fragmentation in T98G cell lines and fluorescent miscroscopy in all cell lines. The T98G cells stably transfected with bcl-2 before DR5 overexpression were protected from cell death. Conclusions The authors conclude that DR5 represents a promising new approach to directly activating the intrinsic caspase pathway in glioma cells. The fact that TRAIL-resistant gliomas do not express decoy receptors suggests a mechanism of resistance unique from that proposed for normal tissues. The overexpression of DR5 induced apoptotic cell death in glioma cells without TRAIL and was able to overcome the resistance to TRAIL demonstrated in U373 cells. The Bcl-2 protects cells from DR5 by acting downstream of the receptor, most likely at the level of caspase activation.


2005 ◽  
Vol 102 (6) ◽  
pp. 1055-1068 ◽  
Author(s):  
Roksana Rodak ◽  
Hisashi Kubota ◽  
Hideyuki Ishihara ◽  
Hans-Pietro Eugster ◽  
Dilek Könü ◽  
...  

Object. Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Methods. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 ± 28 µg/ml and 56 ± 23 µg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 ± 3 µg/ml for the cell lines and a mean EC50 of 3.5 ± 1.7 µg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate—ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription—polymerase chain reaction. Conclusions. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell apoptosis and inhibiting tumor-derived VEGF production.


Oncotarget ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 3380-3395 ◽  
Author(s):  
Maria Beatrice Morelli ◽  
Consuelo Amantini ◽  
Massimo Nabissi ◽  
Claudio Cardinali ◽  
Matteo Santoni ◽  
...  

2013 ◽  
Vol 119 (6) ◽  
pp. 1415-1423 ◽  
Author(s):  
Daniela A. Bota ◽  
Daniela Alexandru ◽  
Stephen T. Keir ◽  
Darell Bigner ◽  
James Vredenburgh ◽  
...  

Object Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Methods Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Results Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)–1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. Conclusions The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.


2009 ◽  
Vol 110 (3) ◽  
pp. 594-604 ◽  
Author(s):  
Yoshifumi Tsuboi ◽  
Masanori Kurimoto ◽  
Shoichi Nagai ◽  
Yumiko Hayakawa ◽  
Hironaga Kamiyama ◽  
...  

Object The intrinsic radioresistance of certain cancer cells may be closely associated with the constitutive activation of nuclear factor–kappa B (NF-κB) activity, which may lead to protection from apoptosis. Recently, nonapoptotic cell death, or autophagy, has been revealed as a novel response of cancer cells to ionizing radiation. In the present study, the authors analyzed the effect of pitavastatin as a potential inhibitor of NF-κB activation on the radiosensitivity of A172, U87, and U251 human glioma cell lines. Methods The pharmacological inhibition of NF-κB activation was achieved using pitavastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Growth and radiosensitivity assays were performed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining, supravital acridine orange staining, and electron microscopy were performed utilizing 3 glioma cell lines with or without pitavastatin pretreatment to identify apoptosis or autophagy after irradiation. Results The growth of these 3 glioma cell lines was not significantly inhibited by pitavastatin at a concentration of up to 1 μM. Treatment with 0.1 μM of pitavastatin enhanced radiation-induced cell death in all glioma cell lines, with different sensitivity. Apoptosis did not occur in any pretreated or untreated (no pitavastatin) cell line following irradiation. Instead, autophagic cell changes were observed regardless of the radiosensitivity of the cell line. An inhibitor of autophagy, 3-methyladenine suppressed the cytotoxic effect of irradiation with pitavastatin, indicating that autophagy is a result of an antitumor mechanism. Using the most radiosensitive A172 cell line, the intracellular localization of p50, a representative subunit of NF-κB, was evaluated through immunoblotting and immunofluorescence studies. The NF-κB of A172 cells was immediately activated and translocated from the cytosol to the nucleus in response to irradiation. Pitavastatin inhibited this activation and translocation of NF-κB. Conclusions Autophagic cell death rather than apoptosis is a possible mechanism of radiation-induced and pitavastatin-enhanced cell damage, and radiosensitization by the pharmacological inhibition of NF-κB activation may be a novel therapeutic strategy for malignant gliomas.


2013 ◽  
Vol 10 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Masateru Tsutsumi ◽  
Yuichi Miki ◽  
Jiro Akimoto ◽  
Jo Haraoka ◽  
Katsuo Aizawa ◽  
...  

Author(s):  
Rongzhong Lu ◽  
Xinyue Sun ◽  
Yaping Ma ◽  
Rong Wang

IntroductionAfatinib exhibits a tumor-inhibiting effect in different cancers by inducing apoptosis; however, its pro-apoptosis role in glioma cells is still not fully understood.Material and methodsIn the current study, two glioma cell lines (U373-MG and U87-MG) were treated with afatinib to measure their tolerance for afatinib-triggered cell death and apoptosis.ResultsWe found that afatinib treatment repressed both growth and proliferation and induced apoptosis in glioma cells. Moreover, it increased the expression of pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The influence of PUMA on afatinib-triggered apoptosis was assessed by PUMA overexpression and knockdown in glioma cell lines. PUMA overexpression resulted in an increased sensitivity of glioma cell lines toward afatinib, whereas its knockdown abated the effect of afatinib on apoptosis. Similarly, the in vivo potency of afatinib on U373-MG xenograft tumors in wild type (WT) and PUMA knockdown nude mice was measured. Afatinib treatment reduced the weight and volume of WT xenograft tumors but did not have the same effect on PUMA knockdown xenograft tumors. Afatinib also induced significant cell death and apoptosis in WT xenograft tumors but not in PUMA knockdown xenograft tumors.ConclusionsIn conclusion, afatinib induces apoptosis in glioma cells by mediating PUMA expression. This study warrants further investigation into the mechanism of afatinib in glioblastoma treatment.


Sign in / Sign up

Export Citation Format

Share Document