scholarly journals Micellized Protein Transduction Domain-Bone Morphogenetic Protein-7 Efficiently Blocks Renal Fibrosis Via Inhibition of Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition

2020 ◽  
Vol 11 ◽  
Author(s):  
Seonghun Kim ◽  
Cheol-Hee Jeong ◽  
Sang Hyun Song ◽  
Jo Eun Um ◽  
Hyun Sil Kim ◽  
...  

Tubulointerstitial renal fibrosis is a chronic disease process affecting chronic kidney disease (CKD). While the etiological role of transforming growth factor-beta (TGF-β) is well known for epithelial–mesenchymal transition (EMT) in chronic kidney disease, effective therapeutics for renal fibrosis are largely limited. As a member of the TGF-β superfamily, bone morphogenetic protein-7 (BMP-7) plays an important role as an endogenous antagonist of TGF-β, inhibiting fibrotic progression in many organs. However, soluble rhBMP-7 is hardly available for therapeutics due to its limited pharmacodynamic profile and rapid clearance in clinical settings. In this study, we have developed a novel therapeutic approach with protein transduction domain (PTD) fused BMP-7 in micelle (mPTD-BMP-7) for long-range signaling in vivo. Contrary to rhBMP-7 targeting its cognate receptors, the nano-sized mPTD-BMP-7 is transduced into cells through an endosomal pathway and secreted to the exosome having active BMP-7. Further, transduced mPTD-BMP-7 successfully activates SMAD1/5/8 and inhibits the TGF-β–mediated epithelial–mesenchymal transition process in vitro and in an in vivo unilateral ureter obstruction model. To determine the clinical relevance of our strategy, we also developed an intra-arterial administration of mPTD-BMP-7 through renal artery in pigs. Interestingly, mPTD-BMP-7 through renal artery intervention effectively delivered into Bowman’s space and inhibits unilateral ureter obstruction–induced renal fibrosis in pigs. Our results provide a novel therapeutic targeting TGF-β–mediated renal fibrosis and other organs as well as a clinically available approach for kidney.

2018 ◽  
Author(s):  
Abdulaziz Asiri ◽  
Teresa Pereira Raposo ◽  
Abdulaziz Alfahed ◽  
Mohammad Ilyas

ABSTRACTCten is a tensin which promotes epithelial-mesenchymal transition (EMT) and cell motility. The precise mechanisms regulating Cten are unknown, although Cten could be regulated by several cytokines and growth factors. Since Transforming growth factor beta 1 (TGF-β1) regulates integrin function and promotes EMT / cell motility, we investigated whether this happens through Cten signalling in colorectal cancer (CRC).TGF-β1 signalling was modulated by either stimulation or knockdown in the CRC cell lines SW620 and HCT116. The effect of this modulation on expression of Cten, EMT markers and cellular function was tested. Cten role as a direct mediator of TGF-β1 signalling was investigated in a CRC cell line with a deleted Cten gene (SW620ΔCten).When TGF-β1 was stimulated or inhibited, this resulted in, respectively, upregulation and downregulation of Cten expression and EMT markers. Cell migration and invasion were significantly increased following TGF-β1 stimulation and lost by TGF-β1 knockdown. TGF-β1 stimulation in SW620ΔCten resulted in selective loss of the effect of TGF-β1 signalling on EMT and cell motility whilst the stimulatory effect on cell proliferation was retained.These data suggested Cten may play an essential role in mediating TGF-β1-induced EMT and cell motility and may play a role in metastasis in CRC.


2020 ◽  
Author(s):  
Lamis M.F. El-Baz ◽  
Nahla M. Shoukry ◽  
Mohamed L. Salem ◽  
Hani S. Hafez ◽  
Robert D. Guzy

Abstract The authors have withdrawn the journal submission associated with this preprint and requested that the preprint also be withdrawn.


2021 ◽  
Author(s):  
Yingjie Zhu ◽  
Dong Sun ◽  
Han Liu ◽  
Linzi Sun ◽  
Jing Jie ◽  
...  

Abstract Background: Accumulating evidence has implicated the potential of natural compounds in treatment of asthma. Bixin is a natural food coloring isolated from the seeds of Bixa Orellana, which possesses anti-tumor, anti-inflammatory and antioxidative properties. Nevertheless, its therapeutic effect in asthma has not been elucidated. Methods: Acute and chronic asthma models of Balb/c mice were established by ovalbumin (OVA) sensitization. For the establishment of a glucocorticoids (GCs) resistant asthma model, Freund’s Adjuvant (CFA) was injected intraperitoneally with OVA. After Bixin treatment, cells in Bronchoalveolar lavage fluid (BALF) were stained with Diff Quick staining and the levels of cytokines were measured by enzyme linked immunosorbent assay (ELISA). The levels of protein in cells and tissues were determined by immunoblotting and/or immunostaining with specific antibodies. The histological changes were determined by Hematoxylin and eosin (H&E), PAS and MASSON staining. Results: Our present study demonstrated that administration of Bixin suppressed allergic airway inflammation and reversed GCs resistance, as well as alleviated airway remodeling and airway hyperresponsiveness (AHR) in asthmatic mice. In vitro studies showed that Bixin treatment could inhibit the development of epithelial-mesenchymal transition (EMT) mediated by transforming growth factor beta (TGF-β) signaling. Importantly, Bixin antagonized activation of phosphatidylinositol 3‑kinase/protein kinase B (PI3K/Akt) pathway both in vitro and in vivo. Conclusions: Above all, our findings reveal that Bixin functions as a potent antagonist of PI3K/Akt signaling to protect against allergic asthma, highlighting a novel strategy for asthma treatment based on natural products.


Sign in / Sign up

Export Citation Format

Share Document