scholarly journals Inhibition of Inflammation and Regulation of AQPs/ENaCs/Na+-K+-ATPase Mediated Alveolar Fluid Transport by Total Flavonoids Extracted From Nervilia fordii in Lipopolysaccharide-induced Acute Lung Injury

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuomiao Yin ◽  
Meizhu Ding ◽  
Long Fan ◽  
Xuhua Yu ◽  
Ziyao Liang ◽  
...  

Aims: The occurrence of vascular permeability pulmonary edema in acute lung injury (ALI) is related to the imbalance of alveolar fluid transport. Regulating the active transport of alveolar fluid by aquaporins (AQPs), epithelial sodium channels (ENaCs), and Na+-K+-ATPase can effectively reduce the edema fluid in the alveolar cavity and protect against ALI. We evaluated the therapeutic effects of total flavonoids, extracted from Nervilia fordii (TFENF), and investigated its potential mechanisms of alveolar fluid transport in a rat ALI model.Materials and methods: A model of lipopolysaccharide (LPS, 5 mg/kg)-induced ALI was established in Sprague-Dawley (SD) rats through the arteriae dorsalis penis. SD rats were divided into six groups, including the vehicle, LPS model, TFENF (6 mg/kg, 12 mg/kg, 24 mg/kg), and dexamethasone group (DEX group, 5 mg/kg). The wet-to-dry (W/D) lung weight ratio, oxygenation index, and histopathological observation were used to evaluate the therapeutic effect of TFENF. The mRNA expression of AQPs, ENaCs, and pro-inflammatory cytokines was determined using real-time polymerase chain reaction, whereas protein expression was determined using immunohistochemistry. The Na+-K+-ATPase activity was assessed using enzyme-linked immunosorbent assay.Results: LPS significantly stimulated the production of inflammatory mediators including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and disrupted the water transport balance in the alveolar cavity by inhibiting AQPs/ENaCs/Na+-K+-ATPase. Pretreatment with TFENF reduced the pathological damage and W/D ratio of the lungs and ameliorated the arterial blood oxygen partial pressure (PaO2) and oxygenation index. TFENF further decreased the mRNA level of TNF-α and IL-1β; increased the expression of AQP-1, AQP-5, αENaC, and βENaC; and increased Na+-K+-ATPase activity. Moreover, the regulation of AQPs, βENaC, and Na+-K+-ATPase and the inhibition of TNF-α and IL-1β by TFENF were found to be dose dependent.Conclusion: TFENF protects against LPS-induced ALI, at least in part, through the suppression of inflammatory cytokines and regulation of the active transport capacity of AQPs/ENaCs/Na+-K+-ATPase. These findings suggest the therapeutic potential of TFENF as phytomedicine to treat inflammation and pulmonary edema in ALI.

2012 ◽  
Vol 303 (3) ◽  
pp. L259-L271 ◽  
Author(s):  
Hans G. Folkesson ◽  
Stephanie R. Kuzenko ◽  
David A. Lipson ◽  
Michael A. Matthay ◽  
Mark A. Simmons

There is a significant unmet need for treatments of patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). The primary mechanism that leads to resolution of alveolar and pulmonary edema is active vectorial Na+ and Cl− transport across the alveolar epithelium. Several studies have suggested a role for adenosine receptors in regulating this fluid transport in the lung. Furthermore, these studies point to the A2A subtype of adenosine receptor (A2AR) as playing a role to enhance fluid transport, suggesting that activation of the A2AR may enhance alveolar fluid clearance (AFC). The current studies test the potential therapeutic value of the A2AR agonist GW328267C to accelerate resolution of alveolar edema and ALI/ARDS in rats. GW328267C, at concentrations of 10−5 M to 10−3 M, instilled into the airspaces, increased AFC in control animals. GW328267C did not increase AFC beyond that produced by maximal β-adrenergic stimulation. The effect of GW328267C was inhibited by amiloride but was not affected by cystic fibrosis transmembrane conductance regulator inhibition. The drug was tested in three models of ALI, HCl instillation 1 h, LPS instillation 16 h, and live Escherichia coli instillation 2 h before GW328267C instillation. After either type of injury, GW328267C (10−4 M) decreased pulmonary edema formation and restored AFC, measured 1 h after GW328267C instillation. These findings show that GW328267C has beneficial effects in experimental models of ALI and may be a useful agent for treating patients with ALI or prophylactically to prevent ALI.


2021 ◽  
Vol 22 (10) ◽  
pp. 5244
Author(s):  
Kevin Munoz ◽  
Samiksha Wasnik ◽  
Amir Abdipour ◽  
Hongzheng Bi ◽  
Sean M. Wilson ◽  
...  

Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1β, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Weiwei Su ◽  
Qinglian Dong ◽  
Fangfang Jiao

Background. There is no better treatment method towards paraquat-induced acute lung injury (ALI) at present. Ambroxol combined with methylprednisolone exhibits a significant improvement effect on ALI treatment, whereas their mechanism in ALI is still unclear. Methods. 64 patients with ALI caused by paraquat poisoning brought to our hospital from January 2015 to January 2018 were selected. They were separated into a combined treatment group (CTG) and a routine treatment group (RTG) on the basis of different treatment methods. The survival of patients was observed after 7 days of treatment. Arterial blood gas, oxygen partial pressure (PaO2), partial pressure of carbon dioxide (PaCO2), oxygenation index (PaO2/FiO2), patient’s spontaneous respiratory rate (RR), tidal volume (VT), and positive end-expiratory pressure (PEEP) were observed before and after treatment for 7 days. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were analyzed. The differences of indexes between the dead patients and the survivors were observed, and the potential predictive value of death was analyzed. Results. After treatment, the indexes of patients were significantly improved in both groups compared with those before therapy. Further comparison showed that the improvement of PaO2, PaCO2, and PaO2/FiO2 in CTG was obviously higher than that in RTG ( p < 0.05 ). The improvement of RR, PEEP, and VT in CTG was obviously higher than that in RTG ( p < 0.05 ). The decreased degree of IL-6 and TNF-α in CTG was higher than that in RTG ( p < 0.05 ). The 7-day mortality rate of 64 patients was 39.06%, and there was no obvious difference in the 7-day survival rate in both groups ( p = 0.649 ). IL-6 and TNF-α were expected to be potential prediction indexes of paraquat-induced ALI. Conclusion. Ambroxol combined with methylprednisolone significantly improved the oxygen partial pressure and oxygenation index of patients with paraquat-induced ALI and inhibited the inflammatory response of patients.


2021 ◽  
Author(s):  
Mingzhu Xia ◽  
Zhi Huang ◽  
Mingyu Xu ◽  
Chao Hai ◽  
Wenbo Diao ◽  
...  

Abstract Our previous studies have shown that Dexmedetomidine (Dex), α2 adrenergic receptor (α2AR) agonist, reduces pulmonary edema in LPS-induced acute lung injury (ALI), but the mechanism is not clear. The purpose of this study is to explore whether Dex promotes AFC by upregulating the expression of Na,K-ATPase in LPS-induced ALI and possible molecular mechanisms. Histology of the lungs was assayed with H-E staining, and the lung injury score was calculated. PaO2, PaO2/FiO2 , the lung index, wet/dry (W/D) ratio of the lung tissues and alveolar fluid clearance(AFC) was measured; The concentrations of TNF-α, IL-1β, IL-6 in bronchoalveolar lavage fluid (BALF) and serum were measured. Myeloperoxidase (MPO) activity in lung tissues were determined. The apoptosis rate of A549 cells and the expression of Bcl-2 and Bax were evaluated. The expression of Na,K-ATPase , p-PI3K and p-Akt in vivo and in vitro were evaluated. Dex significantly alleviated lung tissue injury induced by LPS. Dex treatment reduced the W/D, lung index and MPO activity, increased PaO2, PaO2/FiO2 and AFC in LPS-induced ALI. In addition, Dex reduced the concentrations of TNF-α, IL-β and IL-6 in BALF and serum. Dex reduced the apoptosis rate, up-regulated the expression of Bcl-2 and down-regulated the expression of Bax in LPS-stimulated A549 cells. Furthermore, Dex increased the expression of α1Na,K-ATPase, β1 Na,K-ATPase and p-PI3K , p-Akt in vivo and vitro. However, these effects of Dex were partially reversed by the α2AR inhibitor yohim-bine or PI3K inhibitor LY294002. Collectively, these results suggest that Dex attenuates pulmonary edema by stimulating AFC via upregulating the Na,K-ATPase expressi-on in LPS-induced acute lung injury by modulating the α2AR/PI3K/Akt signaling pathway.


2021 ◽  
Author(s):  
Jinxin Zhang ◽  
Kuo Shen ◽  
Jiangang Xie ◽  
Shanshou Liu ◽  
Xiaozhi Bai ◽  
...  

Abstract Background Sepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Macrophage plays a crucial role in the initiation and progress of sepsis. This study meant to explore the effect of IL-6 knockout in CLP induced sepsis. Methods In this study, cecal ligation and puncture (CLP) was performed on wildtype and interleukin 6 (IL-6) knockout C57 mice. General condition and death rate of sepsis mice were observed. organ samples (lungs, livers, kidneys and hearts) and serum were collected for histology observation and inflammatory cytokine detection. Lung tissue injury detection were conducted via lung injury score, wet/dry ration and protein concentrations measurement of Bronchoalveolar lavage fluid (BALF). In in vivo studies, RAW264.7 macrophages were transfected with IL-6 specific siRNA and treated with LPS. After exposed to IL-6 specific siRNA and LPS, expression of inflammatory cytokines interleukin 1 (IL-1), tumor necrosis factor-α (TNF-α), IL-6 and interleukin 10 (IL-10) were detected by RT-qPCR, concentration of IL-1 and TNF-α in culture supernatant were detected by ELISA and M1 and M2 markers were detected by western blot and flow cytometry. Results We constructed CLP induced sepsis models and found that inhibition of IL-6 could improve general condition and death rate of sepsis mice. Mice in IL-6 knockout group display improved tissue damage, especially in the lung tissue. IL-6 knockout relieved inflammatory cytokines storm in both serum and bronchoalveolar lavage fluid while polarized macrophage to an anti-inflammatory M2 phenotype. In cell model, inhibition of IL-6 could alleviate LPS induced expression of inflammatory cytokines IL-1, TNF-α, and IL-6 in macrophages. Western blot and Flow cytometry results indicated that expression of M1 markers (iNOS and CD86) in LPS stimulated macrophages were significantly declined while M2 (Arg-1 and CD206) were enhanced when expression of IL-6 was blocked. Conclusion Inhibition of IL-6 alleviated LPS induced inflammation and exerted protective effect in sepsis via regulating macrophage function and polarization.


Author(s):  
Yuanxu Jiang ◽  
Mingzhu Xia ◽  
Jing Xu ◽  
Qiang Huang ◽  
Zhongliang Dai ◽  
...  

AbstractDexmedetomidine (Dex), a highly selective α2-adrenergic receptor (α2AR) agonist, has an anti-inflammatory property and can alleviate pulmonary edema in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the mechanism is still unclear. In this study, we attempted to investigate the effect of Dex on alveolar epithelial sodium channel (ENaC) in the modulation of alveolar fluid clearance (AFC) and the underlying mechanism. Lipopolysaccharide (LPS) was used to induce acute lung injury (ALI) in rats and alveolar epithelial cell injury in A549 cells. In vivo, Dex markedly reduced pulmonary edema induced by LPS through promoting AFC, prevented LPS-induced downregulation of α-, β-, and γ-ENaC expression, attenuated inflammatory cell infiltration in lung tissue, reduced the concentrations of TNF-α, IL-1β, and IL-6, and increased concentrations of IL-10 in bronchoalveolar lavage fluid (BALF). In A549 cells stimulated with LPS, Dex attenuated LPS-mediated cell injury and the downregulation of α-, β-, and γ-ENaC expression. However, all of these effects were blocked by the PI3K inhibitor LY294002, suggesting that the protective role of Dex is PI3K-dependent. Additionally, Dex increased the expression of phosphorylated Akt and reduced the expression of Nedd4-2, while LY294002 reversed the effect of Dex in vivo and in vitro. Furthermore, insulin-like growth factor (IGF)-1, a PI3K agonists, promoted the expression of phosphorylated Akt and reduced the expression of Nedd4-2 in LPS-stimulated A549 cells, indicating that Dex worked through PI3K, and Akt and Nedd4-2 are downstream of PI3K. In conclusion, Dex alleviates pulmonary edema by suppressing inflammatory response in LPS-induced ALI, and the mechanism is partly related to the upregulation of ENaC expression via the PI3K/Akt/Nedd4-2 signaling pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xin-Yang Wang ◽  
Xin-Yu Li ◽  
Cheng-Hua Wu ◽  
Yu Hao ◽  
Pan-Han Fu ◽  
...  

Abstract Background Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. Methods PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. Results In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. Conclusion PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.


2019 ◽  
Vol 20 (7) ◽  
pp. 1678 ◽  
Author(s):  
Yi-Chen Lee ◽  
Chun-Yu Lin ◽  
Yen-Hsu Chen ◽  
Wen-Chin Chiu ◽  
Yen-Yun Wang ◽  
...  

Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process.


2009 ◽  
Vol 297 (2) ◽  
pp. L219-L227 ◽  
Author(s):  
Charlie Wray ◽  
Ying Mao ◽  
Jue Pan ◽  
Anita Chandrasena ◽  
Frank Piasta ◽  
...  

Intact alveolar barrier function is associated with better outcomes in acute lung injury patients; however, the regulation of alveolar epithelial paracellular transport during lung injury has not been extensively investigated. This study was undertaken to determine whether changes in tight junction claudin expression affect alveolar epithelial barrier properties and to determine the mechanisms of altered expression. In anesthetized mice exposed to ventilator-induced lung injury, claudin-4 was specifically induced among tight junction structural proteins. Real-time PCR showed an eightfold increase in claudin-4 expression in the lung injury model. To examine the role of this protein in barrier regulation, claudin-4 function was inhibited with small interfering RNA (siRNA) and a blocking peptide derived from the binding domain of Clostridium perfringens enterotoxin (CPEBD). Inhibition of claudin-4 decreased transepithelial electrical resistance but did not alter macromolecule permeability in primary rat and human epithelial cells. In mice, CPEBD decreased air space fluid clearance >33% and resulted in pulmonary edema during moderate tidal volume ventilation that did not induce edema in control peptide-treated mice. In vitro phorbol ester induced a ninefold increase in claudin-4 expression that was dependent on PKC activation and the JNK MAPK pathway. These data establish that changes in alveolar epithelial claudin expression influence paracellular transport, alveolar fluid clearance rates, and susceptibility to pulmonary edema. We hypothesize that increased claudin-4 expression early in acute lung injury represents a mechanism to limit pulmonary edema and that the regulation of alveolar epithelial claudin expression may be a novel target for acute lung injury therapy.


Sign in / Sign up

Export Citation Format

Share Document