scholarly journals Authentication of Three Source Spices of Arnebiae Radix Using DNA Barcoding and HPLC

2021 ◽  
Vol 12 ◽  
Author(s):  
Haiyan Xu ◽  
Ping Li ◽  
Guangxi Ren ◽  
Yanjiao Wang ◽  
Dan Jiang ◽  
...  

Arnebia decumbens (Vent.) Coss. et Kralik, A. euchroma (Royle) Johnst and A. guttata Bunge, three commonly used traditional Chinese medicinal plants have been widely used for the clinical treatment of inflammatory diseases caused by fungal, bacterial, oxidation, and other related pathogens. However, precise identification at the similar species level is usually challenging due to the influence of the source of medicinal materials, traditional ethnic medicine and medicinal habits. Here we developed a comprehensive and efficient identification system for three source spices of Arnebiae Radix based on DNA barcoding and HPLC fingerprinting. A total of 599 samples from thirty-five wild populations were collected and identified by using DNA barcodes of ITS2 regions, and the chemotypes of seven naphthoquinoneswere revealed by HPLC quantitative analysis including principal component analysis and hierarchical clustering analysis. Our results showed that the ITS2 sequences can distinguish three source spices of Arnebiae Radix from adulterants. However, it was difficult to identify them by HPLC-specific chromatograms combined with chemometric analysis. These results indicated that DNA barcoding was a more powerful method than HPLC fingerprinting for the identification of related species that were genetically similar. DNA barcoding analysis could be a promising and reliable tool to accurately confirm the identities of medicinal materials, especially for those whose sources are multiple and difficult to be identified by conventional chromatography.

2008 ◽  
Vol 71 (1) ◽  
pp. 210-217 ◽  
Author(s):  
HAILE F. YANCY ◽  
TYLER S. ZEMLAK ◽  
JACQULINE A. MASON ◽  
JEWELL D. WASHINGTON ◽  
BRADLEY J. TENGE ◽  
...  

The use of a DNA-based identification system (DNA barcoding) founded on the mitochondrial gene cytochrome c oxidase subunit I (COI) was investigated for updating the U.S. Food and Drug Administration Regulatory Fish Encyclopedia (RFE; http://www.cfsan.fda.gov/~frf/rfe0.html). The RFE is a compilation of data used to identify fish species. It was compiled to help regulators identify species substitution that could result in potential adverse health consequences or could be a source of economic fraud. For each of many aquatic species commonly sold in the United States, the RFE includes high-resolution photographs of whole fish and their marketed product forms and species-specific biochemical patterns for authenticated fish species. These patterns currently include data from isoelectric focusing studies. In this article, we describe the generation of DNA barcodes for 172 individual authenticated fish representing 72 species from 27 families contained in the RFE. These barcode sequences can be used as an additional identification resource. In a blind study, 60 unknown fish muscle samples were barcoded, and the results were compared with the RFE barcode reference library. All 60 samples were correctly identified to species based on the barcoding data. Our study indicates that DNA barcoding can be a powerful tool for species identification and has broad potential applications.


2021 ◽  
pp. 1-10
Author(s):  
Shiyuan Zhou ◽  
Xiaoqin Yang ◽  
Qianli Chang

By organically combining principal component analysis, spatial autocorrelation algorithm and two-dimensional graph theory clustering algorithm, the comprehensive evaluation model of regional green economy is explored and established. Based on the evaluation index system of regional green economy, this paper evaluates the development of regional green economy comprehensively by using principal component analysis, and evaluates the competitive advantage of green economy and analyzes the spatial autocorrelation based on the evaluation results. Finally, the green economy and local index score as observed values, by using the method of two-dimensional graph clustering analysis of spatial clustering. In view of the fuzzy k –modes cluster membership degree measure method without considering the defects of the spatial distribution of object, double the distance and density measurement of measure method is introduced into the fuzzy algorithm of k –modes, thus in a more reasonable way to update the membership degree of the object. Vote, MUSH-ROOM and ZOO data sets in UCI machine learning library were used for testing, and the F value of the improved algorithm was better than that of the previous one, indicating that the improved algorithm had good clustering effect. Finally, the improved algorithm is applied to the spatial data collected from Baidu Map to cluster, and a good clustering result is obtained, which shows the feasibility and effectiveness of the algorithm applied to spatial data. Results show that the development of green economy using the analysis method of combining quantitative analysis and qualitative analysis, explores the connotation of green economy with space evaluation model is feasible, small make up for the qualitative analysis of the green economy in the past, can objective system to reflect the regional green economic development level, will help policy makers scientific formulating regional economic development strategy, green integrated development of regional green economy from the macroscopic Angle, the development of network system.


2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


2021 ◽  
Vol 7 (1) ◽  
pp. 941-946
Author(s):  
Md Sagir Ahmed ◽  
Sumaiya Salam ◽  
Sayeda Sabrina Sarwar Rumana ◽  
Anindita Barua

We adopted DNA barcoding technique using a 658-bp fragment of the mitochondrial cytochrome c oxidase I (COI) gene to identify shrimp species collected from the different areas of Bangladesh. A total of 24 sequences were generated belonging to 14 species including four new records- Macrobrachium nipponense, Macrobrachium kistnense, Exopalaemon carinicauda and Alpheus malleator. Genetic distance measured with Kimura 2 parameter showed that genetic divergence increased with higher taxonomic rank. The mean genetic divergence was evaluated and found to be 0.935%, 22.67% and 30.92% within species, genus and family, respectively. In addition to the barcode-based species identification system, phylogenetic relationships were established where individuals belonging to the same species were grouped under the same clade. Maximum likelihood (ML) was preferred as the statistical method and as expected, the phylogenetic tree complemented and ensured the conventional taxonomy. The present study evidently showed that DNA barcoding can be served as an effective tool to discriminate the shrimp species and this will enhance the understanding on evolution and conservation biology. Bioresearch Commu. 7(1): 941-946, 2021 (January)


2021 ◽  
Vol 275 ◽  
pp. 01072
Author(s):  
Yang Fan

The existence of unobserved economy is one of the important factors affecting GDP calculation. This paper uses the provincial panel data from 2010 to 2019 in China, and adopts the method of principal component feature extraction to carry out cluster analysis on the multi-indicator panel data. This method preserves the dynamic characteristics of the panel data, calculates the comprehensive score of each eigenvalue, and gives weight to the eigenvalue by using the entropy method, so as to optimize the clustering results representing the eight indicators of the unobserved economy. Through the analysis, it is found that the regional development of China’s unobserved economy is obviously different, and each type has different influencing factors. This result has important practical significance for different regions in China to formulate differentiated unobserved economic governance policies. This also helps to make better use of resources and develop an energy-saving economy.


Author(s):  
S. Shanawaz Basha ◽  
N. Musrat Sultana

Biometrics refers to the automatic recognition of individuals based on their physiological and/or behavioral characteristics, such as faces, finger prints, iris, and gait. In this paper, we focus on the application of finger print recognition system. The spectral minutiae fingerprint recognition is a method to represent a minutiae set as a fixedlength feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. Based on the spectral minutiae features, this paper introduces two feature reduction algorithms: the Column Principal Component Analysis and the Line Discrete Fourier Transform feature reductions, which can efficiently compress the template size with a reduction rate of 94%.With reduced features, we can also achieve a fast minutiae-based matching algorithm. This paper presents the performance of the spectral minutiae fingerprint recognition system, this fast operation renders our system suitable for a large-scale fingerprint identification system, thus significantly reducing the time to perform matching, especially in systems like, police patrolling, airports etc,. The spectral minutiae representation system tends to significantly reduce the false acceptance rate with a marginal increase in the false rejection rate.


2011 ◽  
Vol 63 (4) ◽  
pp. 1225-1234 ◽  
Author(s):  
Reyhaneh Darsouei ◽  
Javad Karimi ◽  
Mehdi Modarres-Awal

DNA barcoding is a modern method for the identification of different species, including insects. Among animals, the major emphasis of DNA barcoding is on insects. Due to this global trend we addressed this approach for surveying a group of insects. The parasitic wasps (including primary and hyperparasitoids) of pome fruit orchard aphids were collected from Iran-Mashhad during 2009-2010. Preliminary identification of this group was performed by using morphological and morphometric characters and SEM. The COI gene in the specimens was amplified and sequenced. In this survey, Aphidius matricariae, Binodoxys angelicae, Diaeretiella rapae, Ephedrus persicae, Lysiphlebus fabarum and Praon volucre parasitoids and Alloxysta sp., Asaphes suspensus, Dendrocerus carpenteri, Pachyneuron aphidis, Syrphophagus aphidivorus hyperparasitoids were studied. Based on intra-interspecies distances and phylogenetic analysis using NJ, all species possess diagnostic barcode sequences. The results of this study show that the COI sequence could be useful in identification study of this group of insects. Here we have provided the first GenBank data for the COI gene of the above-mentioned hyperparasitoids as well as an initial attempt toward preparing DNA barcodes for Iranian parasitoid and hyperparasitoid aphids.


2018 ◽  
Author(s):  
Kam-Cheng Yeong ◽  
Haruo Takizawa ◽  
Thor-Seng Liew

Sabah, northern Borneo is one of the world’s most well-recognized biodiversity hotspots famous for the incredible diversity of its flora and fauna. Plenty of studies of leaf beetle fauna from this region have been conducted over the past 30 years. Yet, our knowledge of the leaf beetle fauna from island habitats remains scarce despite Sabah having the highest number of islands in Malaysia (ca. 500 islands). In this study, we collected leaf beetle fauna from 13 islands off the west coast of Sabah between January 2016 and March 2017. All specimens were identified to species level. Species names were assigned when the specimens fitted the description of species in the literature and morpho-species were assigned when the species names could not be determined. In addition, DNA barcodes – mitochondarial COI gene – of the species were sequenced. A total of 68 species from 31 genera and 5 subfamilies were collected with 12 species name being determined. From the data it was established that Pulau Gaya has the highest species richness (42 species), followed by Pulau Tiga (22 species) and Pulau Sapangar (18 species). Furthermore, a total of 64 Barcode Index Numbers consisting of 101 DNA barcodes were obtained from 60 leaf beetle species. The mean intraspecific and interspecific distances were determined as 0.77 % and 16.11 %, respectively. In addition, DNA barcoding also reveals phenotypic variation in leaf beetle species, particularly in the case of the subfamily Galerucinae. This study provides baseline knowledge and information about the DNA barcodes of leaf beetle species on Sabah’s island habitats for use in future studies.


Sign in / Sign up

Export Citation Format

Share Document