scholarly journals Discovery of New Potent anti-MERS CoV Fusion Inhibitors

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahmoud Kandeel ◽  
Mizuki Yamamoto ◽  
Byoung Kwon Park ◽  
Abdulla Al-Taher ◽  
Aya Watanabe ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV), capable of zoonotic transmission, has been associated with emerging viral pneumonia in humans. In this study, a set of highly potent peptides were designed to prevent MERS-CoV fusion through competition with heptad repeat domain 2 (HR2) at its HR1 binding site. We designed eleven peptides with stronger estimated HR1 binding affinities than the wild-type peptide to prevent viral fusion with the cell membrane. Eight peptides showed strong inhibition of spike-mediated MERS-CoV cell-cell fusion with IC50 values in the nanomolar range (0.25–2.3 µM). Peptides #4–6 inhibited 95–98.3% of MERS-CoV plaque formation. Notably, peptide four showed strong inhibition of MERS-CoV plaques formation with EC50 = 0.302 µM. All peptides demonstrated safe profiles without cytotoxicity up to a concentration of 10 μM, and this cellular safety, combined with their anti-MERS-CoV antiviral activity, indicate all peptides can be regarded as potential promising antiviral agents.

2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Xiyuan Wu ◽  
Zixuan Liu ◽  
Xiaohui Ding ◽  
Danwei Yu ◽  
Huamian Wei ◽  
...  

ABSTRACTSC29EK is an electronically constrained α-helical peptide HIV-1 fusion inhibitor that is highly effective against both wild-type and enfuvirtide (T20)-resistant viruses. In this study, we focused on investigating the mechanism of HIV-1 resistance to SC29EK by two approaches. First, SC29EK-escaping HIV-1 variants were selected and characterized. Three mutant viruses, which possessed two (N43K/E49A) or three (Q39R/N43K/N126K and N43K/E49A/N126K) amino acid substitutions in the N- and C-terminal repeat regions of gp41 were identified as conferring high resistance to SC29EK and cross-resistance to the first-generation (T20 and C34) and newly designed (sifuvirtide, MT-SC29EK, and 2P23) fusion inhibitors. The resistance mutations could reduce the binding stability of SC29EK, impair viral Env-mediated cell fusion and entry, and change the conformation of the gp41 core structure. Further, we determined the crystal structure of SC29EK in complex with a target mimic peptide, which revealed the critical intra- and interhelical interactions underlying the mode of action of SC29EK and the genetic pathway to HIV-1 resistance. Taken together, the present data provide new insights into the structure and function of gp41 and the structure-activity relationship (SAR) of viral fusion inhibitors.IMPORTANCET20 is the only membrane fusion inhibitor available for treatment of viral infection, but it has relatively low anti-HIV activity and genetic barriers for resistance, thus calling for new drugs blocking the viral fusion process. As an electronically constrained α-helical peptide, SC29EK is highly potent against both wild-type and T20-resistant HIV-1 strains. Here, we report the characterization of HIV-1 variants resistant to SC29EK and the crystal structure of SC29EK. The key mutations mediating high resistance to SC29EK and cross-resistance to the first and new generations of fusion inhibitors as well as the underlying mechanisms were identified. The crystal structure of SC29EK bound to a target mimic peptide further revealed its action mode and genetic pathway to inducing resistance. Hence, our data have shed new lights on the mechanisms of HIV-1 fusion and its inhibition.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 326
Author(s):  
Danwei Yu ◽  
Yang Su ◽  
Xiaohui Ding ◽  
Yuanmei Zhu ◽  
Bo Qin ◽  
...  

Peptides derived from the C-terminal heptad repeat (CHR) region of HIV-1 gp41 is potent viral membrane fusion inhibitors, such as the first clinically approved peptide drug T20 and a group of newly-designed peptides. The resistance profiles of various HIV-1 fusion inhibitors were previously characterized, and the secondary mutation N126K in the gp41 CHR was routinely identified during the in vitro and in vivo selections. In this study, the functional and structural relevance of the N126K mutation has been characterized from multiple angles. First, we show that a single N126K mutation across several HIV-1 isolates conferred mild to moderate cross-resistances. Second, the N126K mutation exerted different effects on Env-mediated HIV-1 entry and cell-cell fusion. Third, the N126K mutation did not interfere with the expression and processing of viral Env glycoproteins, but it disrupted the Asn126-based glycosylation site in gp41. Fourth, the N126K mutation was verified to enhance the thermal stability of 6-HB conformation. Fifth, we determined the crystal structure of a 6-HB bearing the N126K mutation, which revealed the interhelical and intrahelical interactions underlying the increased thermostability. Therefore, our data provide new information to understand the mechanism of HIV-1 gp41-mediated cell fusion and its resistance mode to viral fusion inhibitors.


2009 ◽  
Vol 83 (13) ◽  
pp. 6947-6951 ◽  
Author(s):  
Matteo Porotto ◽  
Christine C. Yokoyama ◽  
Gianmarco Orefice ◽  
Han-Sung Kim ◽  
Mohamed Aljofan ◽  
...  

ABSTRACT Peptides derived from conserved heptad repeat (HR) regions of paramyxovirus fusion (F) proteins inhibit viral fusion by interfering with the formation of the fusogenic six-helix bundle structure. Peptide efficacy is affected by the strength of the peptide association with the target virus's complementary HR region. Here, we show that a second basis for peptide efficacy lies in the kinetics of F activation by the homotypic attachment protein: efficient F activation by the attachment protein shortens the period during which antiviral molecules targeting intermediate states of F may act, thereby modulating the effectiveness of inhibitory peptides. These results highlight new issues to be considered in developing strategies for fusion inhibitors.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44874 ◽  
Author(s):  
Xiaoyi Wang ◽  
Weiliang Xiong ◽  
Xiaochu Ma ◽  
Meili Wei ◽  
Yanxia Chen ◽  
...  

Biophysica ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 311-327
Author(s):  
Shana V. Stoddard ◽  
Felissa E. Wallace ◽  
Serena D. Stoddard ◽  
Qianyi Cheng ◽  
Daniel Acosta ◽  
...  

In 2019, novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began infecting humans, resulting in the COVID-19 pandemic. While the push for development of vaccines has yielded some positive results, the emergence of additional variants has led to concerns surrounding sustained vaccine effectiveness as the variants become the dominant strains. This work was undertaken to develop peptide-based antivirals capable of targeting both the wildtype (WT) heptad repeat 1 (HR1) domain of SARS-CoV-2 and the new HR1 variants which have developed. In silico protein mutagenesis, structural characterization, and protein–protein molecular docking were utilized to determine molecular interactions which facilitated binding of peptide-based antivirals targeting the HR1 domains. Molecular dynamics simulations were utilized to predict the final binding affinities of the top five peptide inhibitors designed. This work demonstrated the importance of hydrophobic interactions in the hydrophobic gorge and in the rim of the HR1 domain. Additionally, the placement of charged residues was shown to be essential in maximizing electrostatic interactions. The top five designed peptide inhibitors were all demonstrated to maintain good binding affinity to the WT and the variant HR1 SARS-CoV-2 domains. Therefore, the peptide inhibitors designed in this work could serve as potent antivirals which are effective in targeting both the original SARS-CoV-2 and the HR1 variants that have developed.


2006 ◽  
Vol 81 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Scott A. Miller ◽  
Sharon Tollefson ◽  
James E. Crowe ◽  
John V. Williams ◽  
David W. Wright

ABSTRACT Paramyxoviruses are a leading cause of childhood illness worldwide. A recently discovered paramyxovirus, human metapneumovirus (hMPV), has been studied by our group in order to determine the structural relevance of its fusion (F) protein to other well-characterized viruses utilizing type I integral membrane proteins as fusion aids. Sequence analysis and homology models suggested the presence of requisite heptad repeat (HR) regions. Synthetic peptides from HR regions 1 and 2 (HR-1 and -2, respectively) were induced to form a thermostable (melting temperature, ∼90°C) helical structure consistent in mass with a hexameric coiled coil. Inhibitory studies of hMPV HR-1 and -2 indicated that the synthetic HR-1 peptide was a significant fusion inhibitor with a 50% inhibitory concentration and a 50% effective concentration of ∼50 nM. Many viral fusion proteins are type I integral membrane proteins utilizing the formation of a hexameric coiled coil of HR peptides as a major driving force for fusion. Our studies provide evidence that hMPV also uses a coiled-coil structure as a major player in the fusion process. Additionally, viral HR-1 peptide sequences may need further investigation as potent fusion inhibitors.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau8408 ◽  
Author(s):  
Longlong Si ◽  
Kun Meng ◽  
Zhenyu Tian ◽  
Jiaqi Sun ◽  
Huiqiang Li ◽  
...  

A trimer-of-hairpins motif has been identified in triggering virus-cell fusion within a variety of viral envelopes. Chemically manipulating such a motif represents current repertoire of viral fusion inhibitors. Here, we report that triterpenoids, a class of natural products, antagonize this trimer-of-hairpins via its constitutive heptad repeat-2 (HR2), a prevalent α-helical coil in class I viral fusion proteins. Triterpenoids inhibit the entry of Ebola, Marburg, HIV, and influenza A viruses with distinct structure-activity relationships. Specifically, triterpenoid probes capture the viral envelope via photocrosslinking HR2. Profiling the Ebola HR2-triterpenoid interactions using amino acid substitution, surface plasmon resonance, and nuclear magnetic resonance revealed six residues accessible to triterpenoids, leading to wrapping of the hydrophobic helix and blocking of the HR1-HR2 interaction critical in the trimer-of-hairpins formation. This finding was also observed in the envelopes of HIV and influenza A viruses and might potentially extend to a broader variety of viruses, providing a mechanistic insight into triterpenoid-mediated modulation of viral fusion.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 609 ◽  
Author(s):  
Xiuzhu Geng ◽  
Zixuan Liu ◽  
Danwei Yu ◽  
Bo Qin ◽  
Yuanmei Zhu ◽  
...  

Entry of HIV-1 into target cells is mediated by its envelope (Env) glycoprotein composed of the receptor binding subunit gp120 and the fusion protein gp41. Refolding of the gp41 N- and C-terminal heptad repeats (NHR and CHR) into a six-helix bundle (6-HB) conformation drives the viral and cellular membranes in close apposition and generates huge amounts of energy to overcome the kinetic barrier leading to membrane fusion. In this study, we focused on characterizing the structural and functional properties of a single Asn-145 residue, which locates at the middle CHR site of gp41 and is extremely conserved among all the HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. By mutational analysis, we found that Asn-145 plays critical roles for Env-mediated cell-cell fusion and HIV-1 entry. As determined by circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC), the substitution of Asn-145 with alanine (N145A) severely impaired the interactions between the NHR and CHR helices. Asn-145 was also verified to be important for the antiviral activity of CHR-derived peptide fusion inhibitors and served as a turn-point for the inhibitory potency. Intriguingly, Asn-145 could regulate the functionality of the M-T hook structure at the N-terminus of the inhibitors and displayed comparable activities with the C-terminal IDL anchor. Crystallographic studies further demonstrated the importance of Asn-145-mediated interhelical and intrahelical interactions in the 6-HB structure. Combined, the present results have provided valuable information for the structure-function relationship of HIV-1 gp41 and the structure-activity relationship of gp41-dependent fusion inhibitors.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


Sign in / Sign up

Export Citation Format

Share Document