scholarly journals Comparison of Pinoresinol and its Diglucoside on their ADME Properties and Vasorelaxant Effects on Phenylephrine-Induced Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiqiong Pu ◽  
Yiqing Cai ◽  
Qi Zhang ◽  
Tianling Hou ◽  
Teng Zhang ◽  
...  

Pinoresinol (PINL) and pinoresinol diglucoside (PDG), two natural lignans found in Eucommia ulmoides Oliv. (Duzhong), have several pharmacological activities. However, there is no report available on their absorption, distribution, metabolism, and elimination (ADME) properties. Given the possible wide spectrum of their application in therapeutic areas, this area should be investigated. This work studied the in vitro ADME properties of PDG and PINL, including their kinetic solubility, permeability across monolayer cells (PAMPA), protein binding, and metabolic stabilities in liver microsomes. The in vivo pharmacokinetic study and in vitro vasorelaxant effects on isolated phenylephrine-induced aortic rings of PINL and PDG were also investigated. It was found that both of their kinetic solubility in PBS (pH 7.4) was greater than 100 μM, indicating that they are both soluble compounds. The permeability investigations (Peff) by PAMPA indicated that PINL had higher permeability than PDG (p < 0.05). Both components represented moderate plasma protein binding activities (average binding rate in human plasma: PINL 89.03%, PDG 45.21%) and low metabolic rate (t1/2 in human liver microsome: PINL 1509.5 min, PDG 1004.8 min). Furthermore, the results of pharmacokinetic studies indicated that PINL might be eliminated less quickly than PDG from the rat plasma, and its cumulative urinary excretion was much lower than that of PDG. The phenylephrine-induced aortic rings demonstrated concentration-dependent vasorelaxation in PDG, PINL, or their combination group. The vasorelaxant effects of PINL were more obvious than those of PDG, whereas the vasorelaxant effect of the combinations was significantly better than that of the single component (p < 0.05). The similarity or difference between PINL and its diglucoside in these pharmaceutical aspects may offer valuable insights into the further exploration of lignans and might contribute to relevant studies involving natural products with similar molecular structure and their glucosides.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 339
Author(s):  
Guru R. Valicherla ◽  
Roshan A. Katekar ◽  
Shailesh Dadge ◽  
Mohammed Riyazuddin ◽  
Anees A. Syed ◽  
...  

PSTi8 is a pancreastatin inhibitory peptide that is effective in the treatment of diabetic models. This study investigates the pharmacokinetic (PK) properties of PSTi8 in Sprague Dawley rats, for the first time. In vitro and in vivo PK studies were performed to evaluate the solubility, stability in plasma and liver microsomes, plasma protein binding, blood–plasma partitioning, bioavailability, dose proportionality, and gender difference in PK. Samples were analyzed using the validated LC-MS/MS method. The solubility of PSTi8 was found to be 9.30 and 25.75 mg/mL in simulated gastric and intestinal fluids, respectively. The protein binding of PSTi8 was estimated as >69% in rat plasma. PSTi8 showed high stability in rat plasma and liver microsomes and the blood–plasma partitioning was >2. The bioavailability of PSTi8 after intraperitoneal and subcutaneous administration was found to be 95.00 ± 12.15 and 78.47 ± 17.72%, respectively, in rats. PSTi8 showed non-linear PK in dose proportionality studies, and has no gender difference in the PK behavior in rats. The high bioavailability of PSTi8 can be due to high water solubility and plasma protein binding, low clearance and volume of distribution. Our in vitro and in vivo findings support the development of PSTi8 as an antidiabetic agent.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4201-4201 ◽  
Author(s):  
Pauline Yeo ◽  
P. Venkatesh ◽  
Evelyn Goh ◽  
Peizi Zeng ◽  
Lee S. New ◽  
...  

Abstract Key physicochemical properties such as solubility, lipophilicity (logD7.4, logP) and pKa (the negative log of the acid dissociation constant) can be used to predict protein binding, tissue distribution, and gastrointestinal (GI) absorption. More recent application of computational methods allows even better prediction of compound oral bioavailability from in vitro and/or in silico properties. During the lead optimization process in our multi-kinase inhibitor program a good correlation between physicochemical properties like logD and solubility (determined experimentally at pH 7) versus AUC(0-inf) (Area Under the Curve) was observed for a series of kinase inhibitors. A calculated logD*solubility value between 200 to 400 predicted a reasonably high oral AUC(0-inf) in mouse PharmacoKinetic (PK) studies for this series of compounds, with correlation coefficient of >0.9. The correlation of logD*solubility vs. AUC(0-inf) enabled us to prioritize compounds for PK studies. SB1317, a novel pyrimidine derivative, is an orally active multi-kinase inhibitor that evolved as a lead drug candidate from in vitro and in vivo pharmacokinetic studies. SB1317 is a highly permeable compound, does not undergo active P-glycoprotein transport, and has a solubility of 75 μg/ml. It is metabolically stable in dog and human liver microsomes and unstable in rodent liver microsomes. No P450 inhibition was observed up to 10 μM towards CYP3A4, CYP1A2, CYP2C9 and CYP2C19. In vivo pharmacokinetics in nude mice and Beagle dogs resulted in %F of 12 and 37% respectively. Tumor pharmacokinetics of SB1317 shows increased exposure in tumor than in plasma with a AUC(0-t) tumor/plasma ratio of 3. Excellent oral dose proportionality (10, 20 and 40mg/kg) was observed in both plasma and tumor. SB1317 has exhibited uniformly high plasma protein binding (>99%) across the preclinical species and human. It is the free or unbound portion of the compound in the plasma or at the tissue level that would yield effective anti-tumor activity. (AUC0-inf)unbound/GI50 and Cmax-unbound/GI50 were used as PK/PD surrogates for the measure of SB1317 efficacy. A factor of SB1317 unbound AUC (0-inf)/GI50 above 0.5 results in significant pharmacodynamic (PD) effects in hematological tumor models (MV4-11 and HL-60 engraft model). Linear pharmacokinetic extrapolation from preclinical species to human was determined by allometric scaling (predicted human % F = 36). PK/PD relationships established for SB1317 in preclinical species could form the basis of a PK/PD-driven clinical development program.


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2020 ◽  
Vol 13 (2) ◽  
pp. 123-131
Author(s):  
Steven X. Hu ◽  
Chase A. Mazur ◽  
Kenneth L. Feenstra

Background: There has been a lack of information about the inhibition of bovine medicines on bovine hepatic CYP450 at their commercial doses and dosing routes. Objective: The aim of this work was to assess the inhibition of 43 bovine medicines on bovine hepatic CYP450 using a combination of in vitro assay and Cmax values from pharmacokinetic studies with their commercial doses and dosing routes in the literature. Methods: Those drugs were first evaluated through a single point inhibitory assay at 3 μM in bovine liver microsomes for six specific CYP450 metabolisms, phenacetin o-deethylation, coumarin 7- hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorzoxazone 6-hydroxylation and midazolam 1’-hydroxylation. When the inhibition was greater than 20% in the assay, IC50 values were then determined. The potential in vivo bovine hepatic CYP450 inhibition by those drugs was assessed using a combination of the IC50 values and in vivo Cmax values from pharmacokinetic studies at their commercial doses and administration routes in the literature. Results: Fifteen bovine medicines or metabolites showed in vitro inhibition on one or more bovine hepatic CYP450 metabolisms with different IC50 values. Desfuroylceftiour (active metabolite of ceftiofur), nitroxinil and flunixin have the potential to inhibit one of the bovine hepatic CYP450 isoforms in vivo at their commercial doses and administration routes. The rest of the bovine medicines had low risks of in vivo bovine hepatic CYP450 inhibition. Conclusion: This combination of in vitro assay and in vivo Cmax data provides a good approach to assess the inhibition of bovine medicines on bovine hepatic CYP450.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1129
Author(s):  
Trang Nguyen Kieu Doan ◽  
Dang-Khoa Vo ◽  
Hyojung Kim ◽  
Anusha Balla ◽  
Yunjong Lee ◽  
...  

The compound 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of vitamin D3 and a representative ligand of the vitamin D receptor (VDR). Previous studies have described the impacts of 1,25(OH)2D3 on a small number of cytochrome P450 (CYP) and uridine diphosphate-glucuronyltransferase (UGT) enzymes, but comparatively little is known about interactions between several important CYP and UGT isoforms and 1,25(OH)2D3 in vitro and/or in vivo. Thus, we investigated the effects of 1,25(OH)2D3 on the gene and protein expressions and functional activities of selected CYPs and UGTs and their impacts on drug pharmacokinetics in rats. The mRNA/protein expressions of Cyp2b1 and Cyp2c11 were downregulated in rat liver by 1,25(OH)2D3. Consistently, the in vitro metabolic kinetics (Vmax and CLint) of BUP (bupropion; a Cyp2b1 substrate) and TOL (tolbutamide; a Cyp2c11 substrate) were significantly changed by 1,25(OH)2D3 treatment in liver microsomes, but the kinetics of acetaminophen (an Ugt1a6/1a7/1a8 substrate) remained unaffected, consistent with Western blotting data for Ugt1a6. In rat pharmacokinetic studies, the total body clearance (CL) and nonrenal clearance (CLNR) of BUP were significantly reduced by 1,25(OH)2D3, but unexpectedly, the total area under the plasma concentration versus time curve from time zero to infinity (AUC) of hydroxybupropion (HBUP) was increased probably due to a marked reduction in the renal clearance (CLR) of HBUP. Additionally, the AUC, CL, and CLNR for TOL and the AUC for 4-hydroxytolbutamide (HTOL) were unaffected by 1,25(OH)2D3 in vivo. Discrepancies between observed in vitro metabolic activity and in vivo pharmacokinetics of TOL were possibly due to a greater apparent distribution volume at the steady-state (Vss) and lower plasma protein binding in 1,25(OH)2D3-treated rats. Our results suggest possible drug-drug and drug-nutrient interactions and provide additional information concerning safe drug combinations and dosing regimens for patients taking VDR ligand drugs including 1,25(OH)2D3.


2020 ◽  
Vol 14 ◽  
Author(s):  
Neeraj Kumar Saini ◽  
Bhavesh Babulal Gabani ◽  
Umesh Todmal ◽  
Suresh P Sulochana ◽  
Vinay Kiran ◽  
...  

Background: Darolutamide is recently approved for the treatment of non-metastatic castrate resistance prostate cancer. Hitherto, no stereoselective pharmacokinetic data has been published pertaining to darolutamide and its diastereomers in animals or humans. The key aims of the experiment were to examine darolutamide, S,S-darolutamide and S,R-darolutamide with respect to (a) assessment of in vitro stability and protein binding (b) characterization of in vivo oral and intravenous pharmacokinetics in mice. Method: In vitro (liver microsomes stability and protein binding) and in vivo experiments (oral/intravenous dosing to mice) were carried out using darolutamide, S,S-darolutamide and S,R-darolutamide. Besides, tissue levels of darolutamide, S,S-darolutamide and S,R-darolutamide were measured following oral and intravenous dosing. Appropriate plasma/tissue samples served to determine the pharmacokinetics of various analytes in mice. Liquid chromatography in tandem with mass spectrometry procedures enabled the delineation of the plasma pharmacokinetics, in vitro and tissue uptake data of the various analytes. Results: Chiral inversion was absent in the metabolic stability study. However, darolutamide showed profound stereoselectivity (S,Sdarolutamide greater than S,R-darolutamide) after either intravenous or oral dosing. S,R-darolutamide but not S,S-darolutamide showed conversion to its antipode post oral and intravenous dosing to mice. Regardless of oral or intravenous dosing, active keto darolutamide formation was evident after administration of darolutamide, S,S-darolutamide or S,R- darolutamide. Tissue data supported the observations in plasma; however, tissue exposure of the various darolutamide, S,S-darolutamide and S,R-darolutamide were much lower as compared to plasma. Conclusion: In lieu of the human pharmacokinetic data, although the administration of diastereomeric darolutamide was justified, it is proposed to delineate the clinical pharmacokinetics of S,R-darolutamide and S,S-darolutamide relative to darolutamide in future clinical pharmacology studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaomei Fan ◽  
Yan Xu ◽  
Danni Zhu ◽  
Yibing Ji

Ginsenosides Rh1 and Rg3, as the main bioactive components from Ginseng, are effective for prevention and treatment of cardiovascular diseases. Sheng-Mai-San (SMS), a classical complex prescription of traditional Chinese medicines, is composed of Radix Ginseng Rubra, Fructus Schisandrae, and Radix Ophiopogonis. In this research, a sensitive and specific liquid chromatography-mass spectrometric method was developed and validated for stereoselective determination and pharmacokinetic studies of 20(R)- and 20(S)-ginsenoside Rh1 and 20(R)- and 20(S)-ginsenoside Rg3 epimers in rat plasma after oral administration of Radix Ginseng Rubra or SMS extracts. The main pharmacokinetic parameters including Tmax, Cmax, t1/2, and AUC were calculated by noncompartment model. Compared with Radix Ginseng Rubra, SMS could significantly increase the content of ginsenosides Rh1 and Rg3 in the decocting process. Ginsenosides Rh1 and Rg3 following SMS treatment displayed higher Cmax, AUC(0–t), and AUC0–∞ and longer t1/2 and tmax except for 20(R)-Rh1 in rat plasma. The results indicated SMS compound compatibility could influence the dissolution in vitro and the pharmacokinetic behaviors in vivo of ginsenosides Rh1 and Rg3, suggesting pharmacokinetic drug-drug interactions between ginsenosides Rh1 and Rg3 and other ingredients from Fructus Schisandrae and Radix Ophiopogonis. This study would provide valuable information for drug development and clinical application of SMS.


2020 ◽  
Vol 7 (2) ◽  
pp. 191666
Author(s):  
Lu Yu ◽  
Xu Chen ◽  
Wen Sheng Zhang ◽  
Liang Zheng ◽  
Wen Wen Xu ◽  
...  

ET-26-HCl, a novel anaesthetic agent with promising pharmacological properties, lacks extensive studies on pharmacokinetics and disposition in vitro and in vivo . In this study, we investigated the metabolic stability, metabolite production and plasma protein binding (PPB) of ET-26-HCl along with its tissue distribution, excretion and pharmacokinetics in animals after intravenous administration. Ultra-high performance liquid chromatography–tandem quadrupole time-of-flight mass spectrometry identified a total of eight new metabolites after ET-26-HCl biotransformation in liver microsomes from different species. A hypothetical cytochrome P450-metabolic pathway including dehydrogenation, hydroxylation and demethylation was proposed. The PPB rate was highest in mouse and lowest in human. After intravenous administration, ET-26-HCl distributed rapidly to all tissues in rats and beagle dogs, with the highest concentrations in fat and liver. High concentrations of ET-26-acid, a major hydroxylation metabolite of ET-26-HCl, were found in liver, plasma and kidney. Almost complete clearance of ET-26-HCl from plasma occurred within 4 h after administration. Only a small fraction of the parent compound and its acid form were excreted via the urine and faeces. Taken together, the results added to a better understanding of the metabolic and pharmacokinetic properties of ET-26-HCl, which may contribute to the further development of this drug.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Amy Westerling-Bui ◽  
Thomas Soare ◽  
Srinivasan Venkatachalan ◽  
Michael DeRan ◽  
Eva Fast ◽  
...  

Abstract Background and Aims A major challenge in drug discovery is gaining confidence in the human relevance of pre-clinical animal studies. While human iPSC-derived organoids offer exciting opportunities to address this, concerns about applicability and scalability remain. Here, we report a high-throughput human organoid platform for assessment of kidney disease targeting compounds. Method In vitro & in vivo transplanted under athymic rat kidney capsule, differentiated organoids were characterized using single cell RNA sequencing (scRNA-Seq), NanoString, & immunofluorescence techniques. Immunofluorescence quantitative analysis of aggregated actin per in vitro organoid in a protamine sulfate (PS) podocyte injury model was used to evaluate efficacy of GFB-887, a sub-type selective, small molecule transient receptor potential canonical 5 (TRPC5) inhibitor. In pharmacokinetic studies, GFB-887 was orally administered into rats, then the presentation of GFB-887 was measured in rat plasma, rat kidney, & in vivo transplanted human organoids. In pharmacodynamic studies of transplanted human organoids, rats were co-perfused with GFB-887 & PS or orally dosed with GFB-887 prior to PS, then immunofluorescence quantitative analysis of mean synaptopodin intensity in podocytes of the in vivo transplanted organoids was used to evaluate efficacy of GFB-887. Results We confirmed platform reproducibility by scRNA-Seq and derived a NanoString panel for efficient quality control. Organoid transplantation in rats for 2 to 4 weeks promoted organoid maturation and vascularization. In functional studies, cyclosporine A (CsA), a calcineurin inhibitor clinically utilized for the treatment of nephrotic syndrome, and GFB-887, a novel sub-type selective TRPC5 inhibitor currently in clinical development, protected in vitro kidney organoids from injury. Pharmacodynamic studies with GFB-887 delivered orally to rats were also successfully performed in human transplanted organoids. Conclusion These data show how human organoids can deliver confidence in taking development candidate compounds to the clinic, fulfilling their promise to revolutionize drug discovery.


1991 ◽  
Vol 6 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Masuhiro TSUDA ◽  
Yoshio YAMAMOTO ◽  
Kazuhiko UDA ◽  
Takashi SHINDO ◽  
Yasuro KAWAGUCHI

Sign in / Sign up

Export Citation Format

Share Document