scholarly journals Innovation in Informatics to Improve Clinical Care and Drug Accessibility for Rare Diseases in China

2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Liu ◽  
Mengchun Gong ◽  
Jie Li ◽  
Gareth Baynam ◽  
Weiguo Zhu ◽  
...  

Background: In China, there are severe unmet medical needs of people living with rare diseases. Relatedly, there is a dearth of data to inform rare diseases policy. This is historically partially due to the lack of informatics infrastructure, including standards and terminology, data sharing mechanisms and network; and concerns over patient privacy protection.Objective: This study aims to introduce the progress of China's rare disease informatics platform and knowledgebase, and to discuss critical enablers of rare disease informatics innovation, including: data standardization; knowledgebase construction; national policy support; and multi-stakeholder participation.Methods: A systemic national strategy, delivered through multi-stakeholder engagement, has been implemented to create and accelerate the informatics infrastructure to support rare diseases management. This includes a disease registry system, together with more than 80 hospitals, to perform comprehensive research information collection, including clinical, genomic and bio-sample data. And a case reporting system, with a network of 324 hospitals, covering all mainland Chinese provinces, to further support reporting of rare diseases data. International standards were incorporated, and privacy issues were addressed through HIPAA compliant rules.Results: The National Rare Diseases Registry System of China (NRDRS) now covers 166 rare diseases and more than 63,000 registered patients. The National Rare Diseases Case Reporting System of China (NRDCRS) was primarily founded on the National Network of Rare Diseases (NNRD) of 324 hospitals and focused on real-time rare diseases case reporting; more than 400,000 cases have been reported. Based on the data available in the two systems, the National Center for Health Technology Assessment (HTA) of Orphan Medicinal Products (OMP) has been established and the expert consensus on HTA of OMP was produced. The largest knowledgebase for rare disease in Chinese has also been developed.Conclusion: A national strategy and the coordinating mechanism is the key to success in the improvement of Chinese rare disease clinical care and drug accessibility. Application of innovative informatics solutions can help accelerate the process, improve quality and increase efficiency.

2020 ◽  
Vol 36 (S1) ◽  
pp. 17-18
Author(s):  
Fiona Pearce ◽  
Liang Lin ◽  
Kwong Ng

IntroductionA national multi-stakeholder charity fund has been established in Singapore to provide targeted support to patients with rare genetic diseases whose treatment costs remain unaffordable despite government subsidies and insurance. This presentation will provide an overview of the evaluation, price-setting, and stakeholder engagement processes established to inform the first list of drugs eligible for funding under the Rare Disease Fund (RDF).MethodsThe local prevalence of “rare” and “ultra-rare” conditions was defined in line with international rates (≤4 in 10,000 and <2 in 50,000, respectively) to facilitate an analysis of the rare disease landscape in Singapore, and to identify patients most likely to benefit from the RDF. Public healthcare institutions proposed drugs for consideration, which underwent technical evaluation and were then assessed in line with eligibility criteria by an expert clinical group and prioritized by decision makers for funding.ResultsThe number of patients with select rare diseases in Singapore was lower than global estimates contextualized to the local setting. Supporting clinical evidence, funding decisions from overseas health technology assessment agencies, reference pricing considerations, and local budget impact analyses informed the first tranche of drugs (n = 5) recommended. Extensive engagement with pharmaceutical companies was needed to negotiate fair drug prices relative to overseas countries. Additional treatments will be included in the RDF once sufficient funds are raised.ConclusionsAs the evaluation process evolves, wider considerations of disease and treatment experiences from a multi-stakeholder standpoint should be included to inform RDF listings. There is also a need to balance the sustainability of the fund in the longer term with the number of emerging treatments that may require coverage in the future.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jian Guo ◽  
Peng Liu ◽  
Limeng Chen ◽  
Haohan Lv ◽  
Jie Li ◽  
...  

Abstract Background China has made tremendous progresses in serving the needs of its people living with rare diseases in the past decade, especially over the last 5 years. The Chinese government’s systematic approach included a series of coordinated initiatives, amongst these are: forming the Rare Disease Expert Committee (2016), funding the “Rare Diseases Cohort Study” (2016–2020), and publishing its first “Rare Disease Catalog” (2018). Herein, we present the National Rare Diseases Registry System (NRDRS)—China’s first national rare diseases registry, and the analysis of cases registered in the first 5 years ending Dec 31, 2020. Results The total 62,590 cases covered 166 disease/disease types, forming 183 disease cohorts. The data from nearly 22% of them (13,947 cases) is also linked to valuable biological samples. The average age of definitive diagnosis was 30.88 years; 36.07% of cases were under 18 years of age. Regional distribution analysis showed 60% of cases were from the more developed, wealthier East and North China, suggesting the local availability of quality care and patients’ financial status were key access factors. Finally, 82.04% of cases were registered from the five clinical departments: Neurology, Endocrine, Hematology, Cardiovascular, and Nephrology, suggesting that either these are most affected by rare diseases, or that there were disease non-specific ascertainment factors. Conclusions The preliminary analysis of the first 5-year’s data provides unique and valuable insight on rare disease distribution in China, and higlights the directions for enhancing equity, scale and utility.


FACETS ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 836-863
Author(s):  
Alexander Bernier

The Canadian Genomics Partnership for Rare Diseases, spearheaded by Genome Canada, will integrate genome-wide sequencing to rare disease clinical care in Canada. Centralized and tiered models of data stewardship are proposed to ensure that the data generated can be shared for secondary clinical, research, and quality assurance purposes in compliance with ethics and law. The principal ethico-legal obligations of clinicians, researchers, and institutions are synthesized. Governance infrastructures such as registered access platforms, data access compliance offices, and Beacon systems are proposed as potential organizational and technical foundations of responsible rare disease data sharing. The appropriate delegation of responsibilities, the transparent communication of rights and duties, and the integration of data privacy safeguards into infrastructure design are proposed as the cornerstones of rare disease data stewardship.


2021 ◽  
Author(s):  
Jian Guo ◽  
Peng Liu ◽  
Limeng Chen ◽  
Haohan Lv ◽  
Jie Li ◽  
...  

Abstract China has made remarkable broad and system wide progress in serving the needs of its people living with rare diseases, especially over the last 5 years. The Chinese government’s systematic approach included a series of coordinated initiatives, amongst these are: forming the Rare Disease Expert Committee (2016), to funding the “Rare Diseases Cohort Study” (2016–2020), and to publishing its first “Rare Disease Catalog” (2018). Herein, we present the National Rare Diseases Registry System (NRDRS), China’s first national rare diseases registry, and analysis of the cases registered in the first 5 years ending Dec 31, 2020. The total 62,590 cases covered 166 diseases/disease types, forming 183 disease cohorts. The data from nearly 22% of them (13,947 cases) is also linked to valuable biological samples. The average age of definitive diagnosis was 30.88 years; 36.07% under 18 years of age. Regional distribution analysis showed 60% of cases were from the more developed East and North China, suggesting the local availability of quality care and patients’ financial status were key access factors. Finally, 82.04% of cases were registered from the five clinical departments: Neurology, Endocrine, Hematology, Cardiovascular, and Nephrology, suggesting that either these are most affected by rare diseases, or that there were disease non-specific ascertainment factors. The preliminary analysis of the first 5-year’s data provides unique and valuable insight on rare disease distribution in China, and higlights directions for enhancing equity, scale and utility.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mercedes Guilabert ◽  
Alba Martínez-García ◽  
Marina Sala-González ◽  
Olga Solas ◽  
José Joaquín Mira

Abstract Objective To measure the experience of the person having a rare disease in order to identify objectives for optimal care in the health care received by these patients. Methods. A cross-sectional study was conducted in Spain involving patients associated with the Spanish Rare Diseases Federation [Federación Española de Enfermedades Raras] (FEDER). A modified version of the PREM IEXPAC [Instrumento para evaluar la Experiencia del Paciente Crónico] instrument was used (IEXPAC-rare-diseases). Scores ranged between 0 (worst experience) and 10 (best experience). Results A total of 261 caregivers (in the case of paediatric population) and patients with rare diseases (response rate 54.4%) replied. 232 (88.9%) were adult patients and 29 (11.1%) caregivers of minor patients. Most males, 227 (87%), with an average age of 38 (SD 13.6) years. The mean time since confirmation of diagnosis was 7.8 (SD 8.0) years. The score in this PREM was 3.5 points out to 10 (95%CI 3.2–3.8, SD 2.0). Caregivers of paediatric patients scored higher, except for coordination of social and healthcare services. Conclusions There are wide and important areas for improvement in the care of patients with rare diseases. This study involves a first assesment of the experience of patients with rare diseases in Spain.


Author(s):  
Qian Zhu ◽  
Dac-Trung Nguyen ◽  
Eric Sid ◽  
Anne Pariser

Abstract Objective In this study, we aimed to evaluate the capability of the Unified Medical Language System (UMLS) as one data standard to support data normalization and harmonization of datasets that have been developed for rare diseases. Through analysis of data mappings between multiple rare disease resources and the UMLS, we propose suggested extensions of the UMLS that will enable its adoption as a global standard in rare disease. Methods We analyzed data mappings between the UMLS and existing datasets on over 7,000 rare diseases that were retrieved from four publicly accessible resources: Genetic And Rare Diseases Information Center (GARD), Orphanet, Online Mendelian Inheritance in Men (OMIM), and the Monarch Disease Ontology (MONDO). Two types of disease mappings were assessed, (1) curated mappings extracted from those four resources; and (2) established mappings generated by querying the rare disease-based integrative knowledge graph developed in the previous study. Results We found that 100% of OMIM concepts, and over 50% of concepts from GARD, MONDO, and Orphanet were normalized by the UMLS and accurately categorized into the appropriate UMLS semantic groups. We analyzed 58,636 UMLS mappings, which resulted in 3,876 UMLS concepts across these resources. Manual evaluation of a random set of 500 UMLS mappings demonstrated a high level of accuracy (99%) of developing those mappings, which consisted of 414 mappings of synonyms (82.8%), 76 are subtypes (15.2%), and five are siblings (1%). Conclusion The mapping results illustrated in this study that the UMLS was able to accurately represent rare disease concepts, and their associated information, such as genes and phenotypes, and can effectively be used to support data harmonization across existing resources developed on collecting rare disease data. We recommend the adoption of the UMLS as a data standard for rare disease to enable the existing rare disease datasets to support future applications in a clinical and community settings.


2019 ◽  
Vol 51 (01) ◽  
pp. 049-052
Author(s):  
Benedikt Hofmeister ◽  
Celina von Stülpnagel ◽  
Steffen Berweck ◽  
Angela Abicht ◽  
Gerhard Kluger ◽  
...  

AbstractNicolaides–Baraitser syndrome (NCBRS) is a rare disease caused by a mutation in the SMARCA2 gene. Clinical features include craniofacial dysmorphia and abnormalities of the limbs, as well as intellectual disorder and often epilepsy. Hepatotoxicity is a rare complication of the therapy with valproic acid (VPA) and a mutation of the polymerase γ (POLG) might lead to a higher sensitivity for liver hepatotoxicity. We present a patient with the coincidence of two rare diseases, the NCBRS and additionally a POLG1 mutation in combination with a liver hepatotoxicity. The co-occurrence in children for two different genetic diseases is discussed with the help of literature review.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Friederike Ehrhart ◽  
Egon L. Willighagen ◽  
Martina Kutmon ◽  
Max van Hoften ◽  
Leopold M. G. Curfs ◽  
...  

AbstractHere, we describe a dataset with information about monogenic, rare diseases with a known genetic background, supplemented with manually extracted provenance for the disease itself and the discovery of the underlying genetic cause. We assembled a collection of 4166 rare monogenic diseases and linked them to 3163 causative genes, annotated with OMIM and Ensembl identifiers and HGNC symbols. The PubMed identifiers of the scientific publications, which for the first time described the rare diseases, and the publications, which found the genes causing the diseases were added using information from OMIM, PubMed, Wikipedia, whonamedit.com, and Google Scholar. The data are available under CC0 license as spreadsheet and as RDF in a semantic model modified from DisGeNET, and was added to Wikidata. This dataset relies on publicly available data and publications with a PubMed identifier, but by our effort to make the data interoperable and linked, we can now analyse this data. Our analysis revealed the timeline of rare disease and causative gene discovery and links them to developments in methods.


2021 ◽  
Vol 16 ◽  
Author(s):  
Erica Winter ◽  
Scott Schliebner

: Characterized by small, highly heterogeneous patient populations, rare disease trials magnify the challenges often encountered in traditional clinical trials. In recent years, there have been increased efforts by stakeholders to improve drug development in rare diseases through novel approaches to clinical trial designs and statistical analyses. We highlight and discuss some of the current and emerging approaches aimed at overcoming challenges in rare disease clinical trials, with a focus on the ultimate stakeholder, the patient.


JAMIA Open ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 472-486
Author(s):  
Yaffa R Rubinstein ◽  
Peter N Robinson ◽  
William A Gahl ◽  
Paul Avillach ◽  
Gareth Baynam ◽  
...  

Abstract The premise of Open Science is that research and medical management will progress faster if data and knowledge are openly shared. The value of Open Science is nowhere more important and appreciated than in the rare disease (RD) community. Research into RDs has been limited by insufficient patient data and resources, a paucity of trained disease experts, and lack of therapeutics, leading to long delays in diagnosis and treatment. These issues can be ameliorated by following the principles and practices of sharing that are intrinsic to Open Science. Here, we describe how the RD community has adopted the core pillars of Open Science, adding new initiatives to promote care and research for RD patients and, ultimately, for all of medicine. We also present recommendations that can advance Open Science more globally.


Sign in / Sign up

Export Citation Format

Share Document