scholarly journals Excretion and Residual Concentration Correlations of Salbutamol Between Edible Tissues and Living Samples in Pigs and Goats

2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Sun ◽  
Minjuan Zhu ◽  
Jingfei Shi ◽  
Kun Mi ◽  
Wenjing Ma ◽  
...  

Illegal use of salbutamol (SAL), a β-adrenergic leanness-enhancing agent, has posed potential threat to human health in China. The excretion and depletion of SAL in pigs and goats were investigated, and the concentration correlations between edible tissues and living samples were analyzed to find out a suitable living sample for pre-slaughter monitoring of SAL in pigs and goats. After a single oral dosage of 1.2 mg/kg SAL, approximately 70% of the dose was excreted by pigs and goats from their excreta. When pigs and goats were supplied feed containing SAL (20 mg/kg) for 14 consecutive days, high concentrations of SAL were observed in the liver and kidneys, and the longest persistence was observed in hair. Unlike pigs, SAL was presented primarily as conjugated SAL in goats. Excellent concentration correlations of SAL were observed between urine and edible tissues both in pigs and goats, and in addition, good correlations also were found between hair and edible tissues in pigs and between feces and edible tissues in goats. Hence, urine and hair could accurately predict SAL concentrations in edible tissues of pigs, whereas feces and urine were satisfactory for predicting SAL concentrations in edible tissues of goats. These data make it possible for pre-slaughter monitoring of SAL residues in the edible tissues of pigs and goats.

Author(s):  
Ewelina Farian ◽  
Angelina Wójcik-Fatla

AbstractFungi are one of the most widely distributed microorganisms in the environment, including food such as fruits, vegetables and other crops, posing a potential threat to food safety and human health. The aim of this study was to determine the diversity, intensity and drug resistance of potentially pathogenic filamentous fungi isolated from the fresh raspberries (Rubus idaeus L.). A total of 50 strains belonging to genera Fusarium, Cladosporium, Alternaria, Penicillium, Mucor, Rhizopus, Aspergillus and Acremonium were tested for drug resistance against 11 antifungals by disc diffusion and gradient strips methods. The average mycological contamination in the examined samples of raspberries amounted to 4.34 log CFU/g. The Cladosporium was isolated from all tested samples, followed by Alternaria and Fusarium with a frequency of 61% and 34%, respectively. The highest level of drug resistance was observed for Acremonium genera and Fusarium strains recorded a wide variation in drug resistance as revealed by susceptibility with amphotericin B and voriconzole with MICs ranged from 0.5–4 µg/ml and posaconazole with MICs ranging from 3–8 µg/ml. All fungal strains showed 100% resistance to caspofungin, fluconazole and flucytosine with both the methods, and 100% resistance to micafungin and anidulafungin in the gradient strip method.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 639
Author(s):  
Alexandre Campos ◽  
El Mahdi Redouane ◽  
Marisa Freitas ◽  
Samuel Amaral ◽  
Tomé Azevedo ◽  
...  

Cyanobacteria are a group of photosynthetic prokaryotes that pose a great concern in the aquatic environments related to contamination and poisoning of wild life and humans. Some species of cyanobacteria produce potent toxins such as microcystins (MCs), which are extremely aggressive to several organisms, including animals and humans. In order to protect human health and prevent human exposure to this type of organisms and toxins, regulatory limits for MCs in drinking water have been established in most countries. In this regard, the World Health Organization (WHO) proposed 1 µg MCs /L as the highest acceptable concentration in drinking water. However, regulatory limits were not defined in waters used in other applications/activities, constituting a potential threat to the environment and to human health. Indeed, water contaminated with MCs or other cyanotoxins is recurrently used in agriculture and for crop and food production. Several deleterious effects of MCs including a decrease in growth, tissue necrosis, inhibition of photosynthesis and metabolic changes have been reported in plants leading to the impairment of crop productivity and economic loss. Studies have also revealed significant accumulation of MCs in edible tissues and plant organs, which raise concerns related to food safety. This work aims to systematize and analyze the information generated by previous scientific studies, namely on the phytotoxicity and the impact of MCs especially on growth, photosynthesis and productivity of agricultural plants. Morphological and physiological parameters of agronomic interest are overviewed in detail in this work, with the aim to evaluate the putative impact of MCs under field conditions. Finally, concentration-dependent effects are highlighted, as these can assist in future guidelines for irrigation waters and establish regulatory limits for MCs.


2012 ◽  
Vol 34 (3) ◽  
pp. 651-660 ◽  
Author(s):  
Barbara Poniedziałek ◽  
Piotr Rzymski ◽  
Mikołaj Kokociński

2018 ◽  
Vol 19 (4) ◽  
pp. 1066-1072
Author(s):  
Q. H. Jin ◽  
C. Y. Cui ◽  
H. Y. Chen ◽  
Y. Wang ◽  
J. F. Geng ◽  
...  

Abstract Adsorption (ADS) and dielectrophoresis (DEP) techniques were combined (ADS/DEP) to efficiently remove As(V) in industrial wastewater. Fly ash, activated carbon, corncob and plant ash were tested to determine the best adsorbent by their adsorption capacity. Plant ash showed the highest adsorption capacity compared with the others. Different parameters such as solution pH and adsorbent dose were explored. The maximum As(V) removal efficiency was 91.4% at the optimized conditions (pH 9.0, adsorbent dose 5 g/L) when the initial concentration of As(V) was 15 mg/L. With the ADS/DEP technique, the plant ash particles with adsorbed As(V) were trapped on the electrodes in a DEP device. The ADS/DEP process could increase the removal efficiency of As(V) to 94.7% at 14 V even when the initial concentration of As(V) was 15 mg/L. And the residual concentration of As(V) decreased to 0.34 mg/L after two series of the ADS/DEP process. The adsorbents before and after DEP were examined by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. After the DEP process, the weight percentage of As(V) on the adsorbent surface increased to 0.96% from 0.5%. The ADS/DEP process could be a new efficient way to remove arsenic pollutant at high concentrations.


2014 ◽  
Vol 12 (S1) ◽  
pp. S12-S16 ◽  
Author(s):  
Krishna Hari Dhakal ◽  
Myoung-Gun Choung ◽  
Young-Sun Hwang ◽  
Felix B. Fritschi ◽  
J. Grover Shannon ◽  
...  

Lutein has significant nutritional benefits for human health. Therefore, enhancing soybean lutein concentrations is an important breeding objective. However, selection for soybeans with high and environmentally stable lutein concentrations has been limited. The objectives of this study were to select soybeans with high seed lutein concentrations and to determine the stability of lutein concentrations across environments. A total of 314 genotypes were screened and 18 genotypes with high lutein concentrations and five genotypes with low lutein concentrations were selected for further examination. These 23 genotypes and two check varieties were evaluated under six environments (two planting dates for 2 years at one location and two planting dates for 1 year at another location). Lutein concentrations were influenced by genotype, environment and genotype × environment interactions. Genotypes with late maturity and low lutein concentrations were more stable than those with early maturity and high concentrations. Early (May) planting resulted in greater lutein concentrations than late (June) planting. Among the genotypes evaluated, PI603423B (7.7 μg/g) and PI89772 (5.8 μg/g) had the greatest mean lutein concentrations and exhibited medium and high stability across the six environments, respectively. Thus, these genotypes may be useful for breeding soybeans with high and stable seed lutein concentrations.


2019 ◽  
Vol 28 ◽  
pp. 1-11
Author(s):  
RI Uroko ◽  
VE Okpashi ◽  
NE Etim ◽  
AC Fidelia

In recent years there has been an increase in the contaminations of heavy metals on the environment. Government and private organization have shown their interest in the effect of dietary exposure to several heavy metals. These heavy metals have been implicated in the etiology of many diseases with high risk to humans. Canned tomatoes paste is one of the important health deterioting factors to human health in Ubani-Umuahia, Nigeria. In this study atomic absorption spectrophotometer was used to screen for nine heavy metals concentration in ten different brands of canned tomatoes paste sold at Ubani-Umuahia market in Nigeria. Human risk assessment was calculated using the collated data to evaluate the predictive risk of human health after the consumption of canned tomatoes paste. Results shows that lead and nickel were not detected in all the canned tomatoes. In comparison low concentrations of copper, iron, and manganese were notated but high concentrations of chromium and cadmium were detected in all the tested tomatoes pastes. Cobalt and zinc concentration was notated lower than permissible limit. The daily intake of copper, cobalt, manganese, chromium, cadmium, nickel, iron, zinc and lead were below their tolerable values in canned tomatoes. The predicted lifetime for carcinogens to occur was less than one (<1). Copper, cobalt, iron, and zinc were below the acceptable value for non-cancer risk with HQ <1.The risk of incurring cancer by ingesting canned tomatoes was within the lifetime predicted a range of (1.0E-6 to 1.0E-4). Finds suggest that prolong and persistent consumption of these heavy metals may cause toxicity and consequential heath challenges. J. bio-sci. 28: 1-11, 2020


Toxicon ◽  
2018 ◽  
Vol 151 ◽  
pp. 34-36 ◽  
Author(s):  
Zakaria A. Mohamed ◽  
Asmaa Bakr ◽  
Hamdy A. Soliman
Keyword(s):  

2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Babur S. Mirza ◽  
Darwin L. Sorensen ◽  
R. Ryan Dupont ◽  
Joan E. McLean

ABSTRACT The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII. In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments.


2010 ◽  
Vol 82 (2) ◽  
pp. 373-381 ◽  
Author(s):  
Kevin A. Francesconi

The presence of arsenic in marine samples was first reported over 100 years ago, and shortly thereafter it was shown that common seafood such as fish, crustaceans, and molluscs contained arsenic at exceedingly high concentrations. It was noted at the time that this seafood arsenic was probably present as an organically bound species because the concentrations were so high that if the arsenic had been present as an inorganic species it would certainly have been toxic to the humans consuming seafood. Investigations in the late 1970s identified the major form of seafood arsenic as arsenobetaine [(CH3)3As+CH2COO–], a harmless organoarsenic compound which, following ingestion by humans, is rapidly excreted in the urine. Since that work, however, over 50 additional arsenic species have been identified in marine organisms, including many important food products. For most of these arsenic compounds, the human toxicology remains unknown. The current status of arsenic in seafood will be discussed in terms of the possible origin of these compounds and the implications of their presence in our foods.


Sign in / Sign up

Export Citation Format

Share Document