scholarly journals Network Pharmacology and Experimental Assessment to Explore the Pharmacological Mechanism of Qimai Feiluoping Decoction Against Pulmonary Fibrosis

2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Yang ◽  
Lu Ding ◽  
Tingting Bao ◽  
Yaxin Li ◽  
Jing Ma ◽  
...  

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-β signaling pathway. Finally, TGF-β1–induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-β1–induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-β/Smad3 pathway.

2021 ◽  
Vol 22 (20) ◽  
pp. 11152
Author(s):  
Kai-Wei Chang ◽  
Xiang Zhang ◽  
Shih-Chao Lin ◽  
Yu-Chao Lin ◽  
Chia-Hsiang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Chang-Mei Weng ◽  
Qing Li ◽  
Kui-Jun Chen ◽  
Cheng-Xiong Xu ◽  
Meng-Sheng Deng ◽  
...  

Abstract Idiopathic pulmonary fibrosis (IPF) is a fatal and chronic disease with a high rate of infection and mortality; however, its etiology and pathogenesis remain unclear. Studies have revealed that epithelial–mesenchymal transition (EMT) is a crucial cellular event in IPF. Here, we identified that the pulmonary fibrosis inducer bleomycin simultaneously increased the expression of bFGF and TGF-β1 and inhibited epithelial-specific regulatory protein (ESRP1) expression in vivo and in vitro. In addition, in vitro experiments showed that bFGF and TGF-β1 down-regulated the expression of ESRP1 and that silencing ESRP1 promoted EMT in A549 cells. Notably, we determined that bFGF activates PI3K/Akt signaling, and treatment with the PI3K/Akt inhibitor LY294002 inhibited bleomycin-induced cell morphology changes and EMT. In addition, the effects of LY294002 on bleomycin-induced EMT were inhibited by ESRP1 silencing in A549 cells. Taken together, these findings suggest that bleomycin induced EMT through down-regulating ESRP1 by simultaneously increasing bFGF and TGF-β1 in pulmonary fibrosis. Additionally, our findings indicated that bFGF inhibits ESRP1 by activating PI3K/Akt signaling.


2020 ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Gang Qing ◽  
Daishun Liu ◽  
Xin Wang ◽  
...  

Abstract Background:Pulmonary fibrosis (PF) is a progressive and lethal disease with poor prognosis. S100A2 plays an important role in the progression of cancer. However, the role of S100A2 in PF has not been reported yet. In this study, we explored the potential role of S100A2 in PF and its potential molecular mechanisms. Methods: First, we analyzed S100A2 expression of patients with PF by retrieving RNA-sequencing datasets from Gene Expression Omnibus (GEO) database. Next, we detected the expression of S100A2 in patients with PF using quantitative real time PCR (qRT-PCR). Then, S100A2 expression was determined with or without the treatment of transforming growth factor-β1 (TGF-β1) in A549 cells. Epithelial-mesenchymal transition (EMT) biomarkers, including E-cadherin,vimentin, and α smooth muscle actin (α-SMA), were identified using qRT-PCR and western blot. Finally, the relevant signalling pathway indicators were detected by western blot. Results: Increased expression of S100A2 was first observed in lung tissues of PF patients. Meanwhile, we found that downregulation of S100A2 inhibited the TGF-β1-induced EMT in A549 cells. Mechanically, TGF-β1 up-regulated β-catenin and phosphorylation of GSK-3β, which was blocked by silencing S100A2 in vitro. Conclusion: These findings demonstrate that downregulation of S100A2 alleviate pulmonary fibrosis via inhibiting EMT. S100A2 is a promising potential target for further understanding the mechanism and developing strategy for the treatment of PF and other EMT-associated disease.


2020 ◽  
Author(s):  
Yanfang Peng ◽  
Yingwen Zhang ◽  
Yabing Zhang ◽  
Xiuping Wang ◽  
Yukun Xia ◽  
...  

Abstract Background: Idiopathic pulmonary fibrosis (IPF) is a serious chronic disease of the respiratory system, and its current treatment have certain shortcomings and adverse effects. In this study, we evaluate the anti-fibrotic activity of pterostilbene (PTE) using an IPF model induced by TGF-β1 in vitro.Methods: A549 and AEC cells were incubated with 10 ng/ml TGF-β1 to induce lung fibroblast activation. 30 μmol/L PTE was used to treat the cells. The epithelial-mesenchymal transition (EMT), accumulation of extracellular matrix (ECM) and autophagy of cells were suggested by western blot. The apoptosis was proved by flow cytometry analysis and western blot. Transcriptome high-throughput sequencing on A549 cells incubated with TGF-β1 alone or TGF-β1 and PTE (TGF-β1+PTE) was performed, and differentially expressed genes caused by PTE were identified. The ASIC2 overexpression plasmid was used to rescue the protein level of ASIC2 in A549 and AEC cells.Results: TGF-β1 caused the EMT and accumulation of ECM, and blocked the autophagy and apoptosis of A549 and AEC cells. Most importantly, 30 μmol/L PTE inhibited the pulmonary fibrosis induced by TGF-β1. Compared with cells treated with TGF-β1, PTE treatment inhibited the EMT and accumulation of ECM, and rescued cell apoptosis and autophagy. The results of transcriptome high-throughput sequencing performed that PTE greatly reduced the protein level of ASIC2. In addition, compared with the TGF-β1+PTE group, the transfection of ASIC2 overexpression plasmid stimulated the EMT and accumulation of ECM, and inhibited apoptosis and autophagy, suggesting that PTE inhibited pulmonary fibrosis by down-regulating ASIC2. Conclusions: In conclusion, our study suggests that PTE and ASIC2 inhibitors may benefit future IPF treatments.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenzhen Ma ◽  
Chunyan Ma ◽  
Qingfeng Zhang ◽  
Yang Bai ◽  
Kun Mu ◽  
...  

AbstractAlveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial–mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-β1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-β1/Smad3 signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanfang Peng ◽  
Yingwen Zhang ◽  
Yabing Zhang ◽  
Xiuping Wang ◽  
Yukun Xia

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a serious chronic disease of the respiratory system, but its current treatment has certain shortcomings and adverse effects. In this study, we evaluate the antifibrotic activity of pterostilbene (PTE) using an in vitro IPF model induced by transforming growth factor (TGF)-β1. Methods A549 and alveolar epithelial cells (AECs) were incubated with 10 ng/ml TGF-β1 to induce lung fibroblast activation. Then, 30 μmol/L of PTE was used to treat these cells. The epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and autophagy in cells were evaluated by western blot. Apoptosis was validated by flow cytometry analysis and western blot. Transcriptome high-throughput sequencing was performed on A549 cells incubated with TGF-β1 alone or TGF-β1 and PTE (TGF-β1 + PTE), and differentially expressed genes in PTE-treated cells were identified. The acid sensing ion channel subunit 2 (ASIC2) overexpression plasmid was used to rescue the protein levels of ASIC2 in A549 and AECs. Results TGF-β1 caused EMT and ECM accumulation, and blocked the autophagy and apoptosis of A549 and AECs. Most importantly, 30 μmol/L of PTE inhibited pulmonary fibrosis induced by TGF-β1. Compared with TGF-β1, PTE inhibited EMT and ECM accumulation and rescued cell apoptosis and autophagy. The results of transcriptome high-throughput sequencing revealed that PTE greatly reduced the protein level of ASIC2. Compared with the TGF-β1 + PTE group, the transfection of ASIC2 overexpression plasmid stimulated the EMT and ECM accumulation and inhibited apoptosis and autophagy, suggesting that PTE inhibited pulmonary fibrosis by downregulating ASIC2. Conclusions This study suggests that PTE and ASIC2 inhibitors may have potential as IPF treatments in the future.


2018 ◽  
Vol 16 (1) ◽  
pp. 407-414
Author(s):  
Rui-qin Li ◽  
Bai-yan Wang ◽  
Yu-wen Ding ◽  
Rui Zhang ◽  
Jun-xia Zhang ◽  
...  

AbstractThe present study explores the mechanism of resistance to pulmonary fibrosis by observing the possible effects of serum containing drugs prepared from Gua Lou Xie Bai decoction (GLXB-D) on transforming growth factor beta 1 (TGF-β1) induced Epithelial-mesenchymal transition (EMT) of A549 human alveolar epithelial cells. The inhibition rate was observed with the help of thiazolyl blue tetrazolium bromide (MTT) in 24 h and 48 h treated cells. Inverted microscope and transmission electron microscope (TEM) were used to study the changes in the morphology and ultrastructure of the cells. The expressions of E-cadherin and Vimentin were comparatively analyzed by Western blotting, while the expressions of Collagen I and III were analyzed by ELISA. The data obtained indicated that the expression of epithelial marker E-cadherin was decreased, while the expressions of EMT markers such as Vimentin and Collagen I and III were increased in 24 h after TGF-β1 induction. However, the serum containing drugs of GLXB-D were found to inhibit the TGF-β1 induced proliferation of cells, increase the expression of E-cadherin and decrease the expression of Vimentin, collagen I and III. In conclusion, the serum containing drugs of GLXB-D effectively reduced pulmonary fibrosis, mainly via the reversal of EMT induction by TGF-β1. Thus, it can be considered as a potential candidate for the development of better treatment methods for pulmonary fibrosis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Su Yeon Oh ◽  
Young-Hee Kang

Abstract Objectives Pulmonary fibrosis is a disease in which lung tissues become fibrous and causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract. These macrophages secrete various cytokines leading to development of pulmonary fibrosis. Aesculetin, a major component of Sancho tree and Chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on pulmonary fibrosis has been poorly understood. The current study investigated that aesculetin inhibited pulmonary fibrosis caused by infiltration of monocyte-derived macrophages. Methods To differentiate to monocyte-derived macrophages, THP-1 human mononuclear cell line was treated with 50 ng/ml phorbol myristate acetate (PMA) for 24 h. Culture conditioned media were harvested from macrophages cultured in the absence of PMA for 24 h. A549 human alveolar basal epithelial cells were cultured in the conditioned media for 24 h to induce alveolar fibrosis. Epithelial–mesenchymal transition (EMT)-associated fibrotic proteins were measured with Western blotting from A549 cell lysates. Results Aesculetin at the concentrations of 1–20 μM did not show any toxicity of A549 cells, evidence by MTT assay. When A549 cells were treated with conditioned media from monocyte-derived macrophages, the expression of mesenchymal fibrotic proteins of α-smooth muscle actin and fibronectin was highly enhanced. In contrast, ≥10 μM aesculetin inhibited the induction of these proteins of A549 cells. The expression of E-cadherin and Zonula occludens-1 was reduced in cells supplemented with conditioned media, while aesculetin promoted these epithelial phenotypic proteins in conditioned media-exposed alveolar cells. Conclusions These results demonstrate that aesculetin may ameliorate EMT-associated alveolar fibrosis caused by monocyte-derived macrophages infiltrated into the alveoli. Therefore, Aesculetin maybe a promising agent treating progressive pulmonary disorders owing to pulmonary inflammation. Funding Sources This work (Grants No. C0501612) was supported by project for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 20.


2021 ◽  
Author(s):  
Hui Ding ◽  
Jinjun Chen ◽  
Jingping Qin ◽  
Ruhua Chen ◽  
Zili Yi

Abstract Background: Although the morbidity and mortality rates associated with idiopathic pulmonary fibrosis (IPF) are high, there is still lack of powerful and precise therapeutic options for IPF. Object: Through in vitro model, this study sought to determine whether binding of acetylated CCAAT/enhancer binding protein β (C/EBPβ) to alpha-smooth muscle actin (α-SMA) promoter could affect the activity of the latter as well as assess if it is essential for epithelial-to-mesenchymal transition (EMT) and extracellular matrix deposition in IPF. Methods: The expression of EMT and C/EBPβ in A549 cells treated with transforming growth factor-beta (TGF-β) as pulmonary fibrotic model was detected by western blotting and qPCR. Collagen-I expression using ELISA was performed. The luciferase activity was used to examine the activity of C/EBPβ. Knockdown of C/EBPβ was performed by siRNA. We also investigated the effect of deacetylation of C/EBPβ on EMT using sirtuin 1 (SIRT1). The binding ability of C/EBPβ with α-SMA promoter was affirmed via chromatin immunoprecipitation (ChIP) and electrophoresis mobility shift assay (EMSA). The relationship between α-SMA and acetylated C/EBPβ was determined with co-immunoprecipitation (Co-IP). SiRNA-mediated knockdown of C/EBPβ in A549 cells attenuated TGF-β1-induced myofibroblast differentiation and ECM deposition. The extent of association between acetylated C/EBPβ and α-SMA promoter was dynamically monitored. Results: It was confirmed that deacetylation of C/EBPβ in A549 cells successfully ameliorated TGF-β1-induced EMT, as shown by reduction in α-SMA expression and excessive collagen-I accumulation. Conclusion: The EMT and fibrotic effect of TGF-β1 is dependent on acetylated C/EBPβ-mediated regulation of α-SMA gene activity. Thus, C/EBPβ acetylation may play a central role in pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document