Antiflammin-1 Inhibits the TGF-β1-Induced Epithelial-Mesenchymal Transition in A549 Cells Through ERK Pathway

CHEST Journal ◽  
2016 ◽  
Vol 149 (4) ◽  
pp. A309 ◽  
Author(s):  
Wei Liu ◽  
Yang Li ◽  
Si-yuan Tang ◽  
Zi-Qiang Luo
2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Yang ◽  
Lu Ding ◽  
Tingting Bao ◽  
Yaxin Li ◽  
Jing Ma ◽  
...  

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-β signaling pathway. Finally, TGF-β1–induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-β1–induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-β/Smad3 pathway.


2021 ◽  
Vol 22 (20) ◽  
pp. 11152
Author(s):  
Kai-Wei Chang ◽  
Xiang Zhang ◽  
Shih-Chao Lin ◽  
Yu-Chao Lin ◽  
Chia-Hsiang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Chang-Mei Weng ◽  
Qing Li ◽  
Kui-Jun Chen ◽  
Cheng-Xiong Xu ◽  
Meng-Sheng Deng ◽  
...  

Abstract Idiopathic pulmonary fibrosis (IPF) is a fatal and chronic disease with a high rate of infection and mortality; however, its etiology and pathogenesis remain unclear. Studies have revealed that epithelial–mesenchymal transition (EMT) is a crucial cellular event in IPF. Here, we identified that the pulmonary fibrosis inducer bleomycin simultaneously increased the expression of bFGF and TGF-β1 and inhibited epithelial-specific regulatory protein (ESRP1) expression in vivo and in vitro. In addition, in vitro experiments showed that bFGF and TGF-β1 down-regulated the expression of ESRP1 and that silencing ESRP1 promoted EMT in A549 cells. Notably, we determined that bFGF activates PI3K/Akt signaling, and treatment with the PI3K/Akt inhibitor LY294002 inhibited bleomycin-induced cell morphology changes and EMT. In addition, the effects of LY294002 on bleomycin-induced EMT were inhibited by ESRP1 silencing in A549 cells. Taken together, these findings suggest that bleomycin induced EMT through down-regulating ESRP1 by simultaneously increasing bFGF and TGF-β1 in pulmonary fibrosis. Additionally, our findings indicated that bFGF inhibits ESRP1 by activating PI3K/Akt signaling.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shengding Zhang ◽  
Yu Fan ◽  
Lu Qin ◽  
Xiaoyu Fang ◽  
Cong Zhang ◽  
...  

Abstract Background Neutrophilic asthmatics (NA) have less response to inhaled corticosteroids. We aimed to find out the predictor of treatment response in NA. Methods Asthmatics (n = 115) and healthy controls (n = 28) underwent clinical assessment during 6-month follow-up with standardized therapy. Asthmatics were categorized by sputum differential cell count. The mRNA expressions were measured by RT-qPCR for sputum cytokines (IFN-γ, IL-1β, IL-27, FOXP3, IL-17A, and IL-5). The protein of IL-1β in sputum supernatant was detected by ELISA. Reticular basement membranes (RBM) were measured in the biopsy samples. The role and signaling pathways of IL-1β mediating the epithelial-mesenchymal transition (EMT) process were explored through A549 cells. Results NA had increased baseline sputum cell IL-1β expression compared to eosinophilic asthmatics (EA). After follow-up, NA had less improvement in FEV1 compared to EA. For all asthmatics, sputum IL-1β mRNA was positively correlated with protein expression. Sputum IL-1β mRNA and protein levels were negatively correlated to FEV1 improvement. After subgrouping, the correlation between IL-1β mRNA and FEV1 improvement was significant in NA but not in EA. Thickness of RBM in asthmatics was greater than that of healthy controls and positively correlated with neutrophil percentage in bronchoalveolar lavage fluid. In vitro experiments, the process of IL-1β augmenting TGF-β1-induced EMT cannot be abrogated by glucocorticoid or montelukast sodium, but can be reversed by MAPK inhibitors. Conclusions IL-1β level in baseline sputum predicts the poor lung function improvement in NA. The potential mechanism may be related to IL-1β augmenting TGF-β1-induced steroid-resistant EMT through MAPK signaling pathways. Trial registration: This study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (IRB ID: 20150406).


2020 ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Gang Qing ◽  
Daishun Liu ◽  
Xin Wang ◽  
...  

Abstract Background:Pulmonary fibrosis (PF) is a progressive and lethal disease with poor prognosis. S100A2 plays an important role in the progression of cancer. However, the role of S100A2 in PF has not been reported yet. In this study, we explored the potential role of S100A2 in PF and its potential molecular mechanisms. Methods: First, we analyzed S100A2 expression of patients with PF by retrieving RNA-sequencing datasets from Gene Expression Omnibus (GEO) database. Next, we detected the expression of S100A2 in patients with PF using quantitative real time PCR (qRT-PCR). Then, S100A2 expression was determined with or without the treatment of transforming growth factor-β1 (TGF-β1) in A549 cells. Epithelial-mesenchymal transition (EMT) biomarkers, including E-cadherin,vimentin, and α smooth muscle actin (α-SMA), were identified using qRT-PCR and western blot. Finally, the relevant signalling pathway indicators were detected by western blot. Results: Increased expression of S100A2 was first observed in lung tissues of PF patients. Meanwhile, we found that downregulation of S100A2 inhibited the TGF-β1-induced EMT in A549 cells. Mechanically, TGF-β1 up-regulated β-catenin and phosphorylation of GSK-3β, which was blocked by silencing S100A2 in vitro. Conclusion: These findings demonstrate that downregulation of S100A2 alleviate pulmonary fibrosis via inhibiting EMT. S100A2 is a promising potential target for further understanding the mechanism and developing strategy for the treatment of PF and other EMT-associated disease.


2020 ◽  
Author(s):  
Yanfang Peng ◽  
Yingwen Zhang ◽  
Yabing Zhang ◽  
Xiuping Wang ◽  
Yukun Xia ◽  
...  

Abstract Background: Idiopathic pulmonary fibrosis (IPF) is a serious chronic disease of the respiratory system, and its current treatment have certain shortcomings and adverse effects. In this study, we evaluate the anti-fibrotic activity of pterostilbene (PTE) using an IPF model induced by TGF-β1 in vitro.Methods: A549 and AEC cells were incubated with 10 ng/ml TGF-β1 to induce lung fibroblast activation. 30 μmol/L PTE was used to treat the cells. The epithelial-mesenchymal transition (EMT), accumulation of extracellular matrix (ECM) and autophagy of cells were suggested by western blot. The apoptosis was proved by flow cytometry analysis and western blot. Transcriptome high-throughput sequencing on A549 cells incubated with TGF-β1 alone or TGF-β1 and PTE (TGF-β1+PTE) was performed, and differentially expressed genes caused by PTE were identified. The ASIC2 overexpression plasmid was used to rescue the protein level of ASIC2 in A549 and AEC cells.Results: TGF-β1 caused the EMT and accumulation of ECM, and blocked the autophagy and apoptosis of A549 and AEC cells. Most importantly, 30 μmol/L PTE inhibited the pulmonary fibrosis induced by TGF-β1. Compared with cells treated with TGF-β1, PTE treatment inhibited the EMT and accumulation of ECM, and rescued cell apoptosis and autophagy. The results of transcriptome high-throughput sequencing performed that PTE greatly reduced the protein level of ASIC2. In addition, compared with the TGF-β1+PTE group, the transfection of ASIC2 overexpression plasmid stimulated the EMT and accumulation of ECM, and inhibited apoptosis and autophagy, suggesting that PTE inhibited pulmonary fibrosis by down-regulating ASIC2. Conclusions: In conclusion, our study suggests that PTE and ASIC2 inhibitors may benefit future IPF treatments.


2018 ◽  
Vol 43 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Jie Weng ◽  
Hao Chen ◽  
He Wu ◽  
Mengyun Tu ◽  
Zhibin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document