scholarly journals Discovery of the Potential Novel Pharmacodynamic Substances From Zhi-Zi-Hou-Po Decoction Based on the Concept of Co-Decoction Reaction and Analysis Strategy

2022 ◽  
Vol 12 ◽  
Author(s):  
Xin Feng ◽  
Yuelin Bi ◽  
Jiaqi Wang ◽  
Tianyi Li ◽  
Gengyuan Yu ◽  
...  

Background: Zhi-Zi-Hou-Po Decoction (ZZHPD), a classic traditional Chinese medicine (TCM) formula, is clinically used to treat insomnia and depression. The analysis strategy based on the concept of co-decoction of TCM is helpful to analyse the effective substances of TCM formula in depth.Aim of the study: This manuscript intends to take ZZHPD as a model sample to explore the phenomenon of co-decoction of complex formula in the combination of liquid chromatography-mass spectrometry (LC-MS) technology, data analysis, and molecular docking.Materials and methods: In the current research, an innovative LC-MS method has been established to study the active ingredients in ZZHPD, and to identify the ingredients absorbed into the blood and brain tissues of mice. And molecular docking was used to study the binding pattern and affinities of known compounds of the brain tissue toward insomnia related proteins.Results: Based on new processing methods and analysis strategies, 106 chemical components were identified in ZZHPD, including 28 blood components and 18 brain components. Then, by comparing the different compounds in the co-decoction and single decoction, it was surprisingly found that 125 new ingredients were produced during the co-decoction, 2 of which were absorbed into the blood and 1 of which was absorbed into brain tissue. Ultimately, molecular docking studies showed that 18 brain components of ZZHPD had favourable binding conformation and affinity with GABA, serotonin and melatonin receptors. The docking results of GABRA1 with naringenin and hesperidin, HCRTR1 with naringenin-7-O-glucoside, poncirenin and genipin 1-gentiobioside, and luteolin with SLC6A4, GLO1, MAOB and MTNR1A may clarify the mechanism of action of ZZHPD in treating insomnia and depression.Conclusion: Our study may provide new ideas for further exploring the effective substances in ZZHPD.

Author(s):  
Abheepsa Mishra ◽  
Satyahari Dey

Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins. Previously, the structure of cyclosaplin was elucidated by molecular modeling associated with dynamics that was used in the current study. Docking studies showed strong affinity of cyclosaplin towards cancer-related proteins. The binding affinity closer to 10 indicated efficient binding. Cyclosaplin showed strong binding affinities towards protein kinases such as EGFR, VEGFR2, PKB and p38 indicating its potential role in protein kinase inhibition. Moreover, it displayed strong binding affinity to apoptosis related proteins and revealed the possible role of cyclosaplin in apoptotic cell death. The protein-ligand interactions using LigPlot displayed some similar interactions between cyclosaplin and peptide-based ligands especially in case of protein kinases and a few apoptosis related proteins. Thus, the in silico analyses gave an insight of cyclosaplin as a potential apoptosis inducer and protein kinase inhibitor.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 740
Author(s):  
Mishra ◽  
Dey

Natural products from plants, such as chemopreventive agents, attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure-based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide-based therapeutics have been developed to combat several health disorders, including cancers, metabolic disorders, heart-related diseases, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, the in silico activities of cyclic peptides towards molecular targets, such as protein kinases, proteases, and apoptosis related proteins have not been extensively investigated. In this study, we explored the in silico kinase and protease inhibitor potentials of cyclosaplin, and studied the interactions of cyclosaplin with other apoptosis-related proteins. Previously, the structure of cyclosaplin was elucidated by molecular modeling associated with dynamics that were used in the current study as well. Docking studies showed strong affinity of cyclosaplin towards cancer-related proteins. The binding affinity closer to 10 kcal/mol indicated efficient binding. Cyclosaplin showed strong binding affinities towards protein kinases such as EGFR, VEGFR2, PKB, and p38, indicating its potential role in protein kinase inhibition. Moreover, it displayed strong binding affinity to apoptosis-related proteins and revealed the possible role of cyclosaplin in apoptotic cell death. The protein–ligand interactions using LigPlot displayed some similar interactions between cyclosaplin and peptide-based ligands, especially in case of protein kinases and a few apoptosis related proteins. Thus, the in silico analyses gave the insights of cyclosaplin being a potential apoptosis inducer and protein kinase inhibitor.


Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


2018 ◽  
Vol 69 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Lucia Pintilie ◽  
Amalia Stefaniu ◽  
Alina Ioana Nicu ◽  
Maria Maganu ◽  
Miron Teodor Caproiu

A new series of fluoroquinolone compounds have been obtained by Gould-Jacobs method. The compounds have been characterized by physic-chemical methods (elemental analysis, FTIR, NMR, UV-Vis) and by antimicrobial activity against Gram-positive and Gram-negative microorganisms. For the synthesized compounds have been performed calculations of characteristics and molecular properties, using Spartan�14 Software from Wavefunction, Inc. Irvine, CA. and molecular docking studies using CLC Drug Discovery Workbench 2.4 software, to identify and visualize the most likely interaction ligand (fluoroquinolone) with the receptor protein.


Sign in / Sign up

Export Citation Format

Share Document