scholarly journals A 3D Copula Method for the Impact and Risk Assessment of Drought Disaster and an Example Application

2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Hou ◽  
Pengcheng Yan ◽  
Guolin Feng ◽  
Dongdong Zuo

Droughts have more impact on crops than any other natural disaster. Therefore, drought risk assessments, especially quantitative drought risk assessments, are significant in order to understand and reduce the negative impacts associated with droughts, and a quantitative risk assessment includes estimating the probability and consequences of hazards. In order to achieve this goal, we built a model based on the three-dimensional (3D) Copula function for the assessment of the proportion of affected farmland areas (PAFA) based on the idea of internally combining the drought duration, drought intensity, and drought impact. This model achieves the “internal combination” of drought characteristics and drought impacts rather than an “external combination.” The results of this model are not only able to provide the impacts at different levels that a drought event (drought duration and drought intensity) may cause, but are also able to show the occurrence probability of impact at each particular level. We took Huize County and Mengzi County in Yunnan Province as application examples based on the meteorological drought index (SPI), and the results showed that the PAFAs obtained by the method proposed in this paper were basically consistent with the actual PAFAs in the two counties. Moreover, due to the meteorological drought always occurring before an agricultural drought, we can get SPI predictions for the next month or months and can further obtain more abundant information on a drought warning and its impact. Therefore, the method proposed in this paper has values both on theory and practice.

Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


Author(s):  
Grant Duwe

As the use of risk assessments for correctional populations has grown, so has concern that these instruments exacerbate existing racial and ethnic disparities. While much of the attention arising from this concern has focused on how algorithms are designed, relatively little consideration has been given to how risk assessments are used. To this end, the present study tests whether application of the risk principle would help preserve predictive accuracy while, at the same time, mitigate disparities. Using a sample of 9,529 inmates released from Minnesota prisons who had been assessed multiple times during their confinement on a fully-automated risk assessment, this study relies on both actual and simulated data to examine the impact of program assignment decisions on changes in risk level from intake to release. The findings showed that while the risk principle was used in practice to some extent, the simulated results showed that greater adherence to the risk principle would increase reductions in risk levels and minimize the disparities observed at intake. The simulated data further revealed the most favorable outcomes would be achieved by not only applying the risk principle, but also by expanding program capacity for the higher-risk inmates in order to adequately reduce their risk.


Author(s):  
Zahra Azhdari ◽  
Ommolbanin Bazrafshan ◽  
Hossein Zamani ◽  
Marzieh Shekari ◽  
Vijay P. Singh

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249937
Author(s):  
Danielle M. McLaughlin ◽  
Jack Mewhirter ◽  
Rebecca Sanders

We use survey data collected from 12,037 US respondents to examine the extent to which the American public believes that political motives drive the manner in which scientific research is conducted and assess the impact that such beliefs have on COVID-19 risk assessments. We find that this is a commonly held belief and that it is negatively associated with risk assessments. Public distrust in scientists could complicate efforts to combat COVID-19, given that risk assessments are strongly associated with one’s propensity to adopt preventative health measures.


2021 ◽  
Author(s):  
Anna Ukkola ◽  
Martin De Kauwe ◽  
Michael Roderick ◽  
Gab Abramowitz ◽  
Andy Pitman

<p>Understanding how climate change affects droughts guides adaptation planning in agriculture, water security, and ecosystem management. Earlier climate projections have highlighted high uncertainty in future drought projections, hindering effective planning. We use the latest CMIP6 projections and find more robust projections of meteorological drought compared to mean precipitation. We find coherent projected changes in seasonal drought duration and frequency (robust over >45% of the global land area), despite a lack of agreement across models in projected changes in mean precipitation (24% of the land area). Future drought changes are larger and more consistent in CMIP6 compared to CMIP5. We find regionalised increases and decreases in drought duration and frequency that are driven by changes in both precipitation mean and variability. Conversely, drought intensity increases over most regions but is not simulated well historically by the climate models. These more robust projections of meteorological drought in CMIP6 provide clearer direction for water resource planning and the identification of agricultural and natural ecosystems at risk.</p>


2021 ◽  
Vol 18 (2) ◽  
pp. 143
Author(s):  
Annisa Mu'awanah Sukmawati ◽  
Puji Utomo

Bantul Regency is a district in Yogyakarta Province which has geographic, geological, hydrological, and demographic characteristics that are likely to cause drought. Drought event in Bantul Regency may have significant impacts on various aspects in line with the characteristics of drought impacts which are complex and cross-sectoral. This study addresses to analyze the level of risk of drought with observation units in 75 villages in the Bantul Regency. The risk analysis was carried out by comparing the time period of the 10 years, i.e. 2008 and 2018 to observe the shift of risk areas of drought in Bantul Regency. The research was conducted using quantitative research methods with quantitative descriptive and mapping analysis. The analysis steps are drought hazard analysis, vulnerability analysis, and drought risk analysis. The analysis shows that during the last 10 years, Kabupaten Bantul has been experiencing an increasing number of villages classified as high risk of drought, both in urban and rural areas. In 2008 there were 15 villages (20%) and increased to 21 villages (28%) in 2018 that were classified as very very high level. Meanwhile, in 2008 there were 30 villages (40%) in 2008 and increased to 32 villages (42.7%) in 2018 that were classified as very high level. It caused by the increasing probability of drought as well as vulnerability. The analysis results can be used as input for stakeholders to take mitigation and anticipation actions to reduce the impact of drought based on the spatial characteristics of the risk areas.


1998 ◽  
Vol 17 (8) ◽  
pp. 454-459 ◽  
Author(s):  
Angelo Turturro ◽  
Bruce Hass ◽  
Ronald W Hart

Hormesis can be considered as a parameter which has a non-monotonic relationship with some endpoint. Since caloric intake is such a parameter, and the impact of this parameter on risk assessment has been fairly well characterized, it can provide clues as to how to integrate the information from a hormetic parameter into risk assessments for toxicants. Based on the work with caloric intake, one could: (a) define a biomarker for hormetic effect; (b) integrate specific information on when in the animals lifespan the parameter is active to influence parameters such as survival; (c) evaluate component effects of the overall hormetic response; and (d) address the consequences of a non-monotonic relationship between the hormetic parameter and endpoints critical for risk assessment. These impacts on risk assessments have been characterized for chronic tests, but are also true for short-term tests. A priority is the characterization of the dose-response curves for hormetic parameters. This quantification will be critical in utilizing them in risk assessment. With this information, one could better quantitatively address the changes one expects to result from the hormetic parameter, and limit the uncertainty and variability which occurs in toxicity testing.


2021 ◽  
pp. 1-44
Author(s):  
Yuqing Zhang ◽  
Qinglong You ◽  
Guangxiong Mao ◽  
Changchun Chen ◽  
Xin Li ◽  
...  

AbstractIt is essential to assess flash drought risk based on a reliable flash drought intensity (severity) index incorporating comprehensive information of the rapid decline (“flash”) in soil moisture towards drought conditions and soil moisture thresholds belonging to the “drought” category. In this study, we used the Gan River Basin as an example to define a flash drought intensity index that can be calculated for individual time steps (pentads) during a flash drought period over a given grid (or station). The severity of a complete flash drought event is the sum of the intensity values during the flash drought. We explored the spatial and temporal characteristics of flash droughts with different grades based on their respective severities. The results show that decreases in total cloud cover, precipitation, and relative humidity, as well as increases in 500 hPa geopotential height, convective inhibition, temperature, vapour pressure deficit, and wind speed can create favorable conditions for the occurrence of flash droughts. Although flash droughts are relatively frequent in the central and southern parts of the basin, the severity is relatively high in the northern part of the basin due to longer duration. Flash drought severity shows a slightly downward trend due to decreases in frequency, duration, and intensity from 1961 to 2018. Extreme and exceptional flash droughts decrease significantly while moderate and severe flash droughts trend slightly upward. Flash drought severity appears to be more affected by the interaction between duration and intensity as the grade increases from mild to severe. The frequency and duration of flash droughts are higher in July to October. The southern part of the basin is more prone to moderate and severe flash droughts, while the northern parts of the basin are more vulnerable to extreme and exceptional flash droughts due to longer durations and greater severities than other parts. Moderate, severe, extreme, and exceptional flash droughts occurred approximately every 3-6, 5-15, 10-50, and 30-200 year intervals, respectively, based on the copula analysis.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 82 ◽  
Author(s):  
Haitham Aladaileh ◽  
Mohammed Al Qinna ◽  
Barta Karoly ◽  
Emad Al-Karablieh ◽  
János Rakonczai

Following the impact of droughts witnessed during the last decade there is an urgent need to develop a drought management strategy, policy framework, and action plan for Jordan. This study aims to provide a historical baseline using the standardized precipitation index (SPI) and meteorological drought maps, and to investigate the spatial and temporal trends using long-term historical precipitation records. Specifically, this study is based on the statistical analysis of 38 years of monthly rainfall data, gathered from all 29 meteorological stations that cover Jordan. The Mann–Kendall test and linear regression analysis were used to uncover evidence of long-term trends in precipitation. Drought indices were used for calculating the meteorological SPI on an annual (SPI12), 6-months (SPI6), and 3-months basis (SPI3). At each level, every drought event was characterized according to its duration, interval, and intensity. Then, drought maps were generated using interpolation kriging to investigate the spatial extent of drought events, while drought patterns were temporally characterized using multilinear regression and spatial grouped using the hierarchical clustering technique. Both annual and monthly trend analyses and the Mann–Kendall test indicated significant reduction of precipitation in time for all weather stations except for Madaba. The rate of decrease is estimated at approximately 1.8 mm/year for the whole country. The spatial SPI krig maps that were generated suggest the presence of two drought types in the spatial dimension: Local and national. Local droughts reveal no actual observed trends or repeatable patterns of occurrence. However, looking at meteorological droughts across all time scales indicated that Jordan is facing an increasing number of local droughts. With a probability of occurrence of once every two years to three years. On the other hand, extreme national droughts occur once every 15 to 20 years and last for two or more consecutive years. Linear trends indicated significant increase in drought magnitude by time with a rate of 0.02 (p < 0.0001). Regression analysis indicated that draught in Jordan is time dependent (p < 0.001) rather than being spatially dependent (p > 0.99). Hierarchical clustering was able to group national draughts into three zones, namely the northern zone, the eastern zone, and the southern zone. This study highlights the urgent need for a monitoring program to investigate local and national drought impacts on all sectors, as well as the development of a set of proactive risk management measures and preparedness plans for various physiographic regions.


Sign in / Sign up

Export Citation Format

Share Document