scholarly journals Quadriceps Muscles O2 Extraction and EMG Breakpoints during a Ramp Incremental Test

2017 ◽  
Vol 8 ◽  
Author(s):  
Danilo Iannetta ◽  
Ahmad Qahtani ◽  
Guillaume Y. Millet ◽  
Juan M. Murias

2017 ◽  
Vol 313 (6) ◽  
pp. R723-R729 ◽  
Author(s):  
Erin Calaine Inglis ◽  
Danilo Iannetta ◽  
Juan M. Murias

This study aimed to examine, at the level of the active muscles, whether the plateau in oxygen (O2) extraction normally observed near the end of a ramp incremental (RI) exercise test to exhaustion is caused by the achievement of an upper limit in O2 extraction. Eleven healthy men (27.3 ± 3.0 yr, 81.6 ± 8.1 kg, 183.9 ± 6.3 cm) performed a RI cycling test to exhaustion. O2 extraction of the vastus lateralis (VL) was measured continuously throughout the test using the near-infrared spectroscopy (NIRS)-derived deoxygenated hemoglobin [HHb] signal. A leg blood flow occlusion was performed at rest (LBFOCC1) and immediately after the RI test (LBFOCC2). The [HHb] values during the resting occlusion (108.1 ± 21.7%; LBFOCC1) and the peak values during exercise (100 ± 0%; [HHb]plateau) were significantly greater than those observed at baseline (0.84 ± 10.6% at baseline 1 and 0 ± 0% at baseline 2) ( P < 0.05). No significant difference was found between LBFOCC1 and [HHb]plateau ( P > 0.05) or between the baseline measurements ( P > 0.05). [HHb] values at LBFOCC2 (130.5 ± 19.7%) were significantly greater than all other time points ( P < 0.05). These results support the existence of an O2 extraction reserve in the VL muscle at the end of a RI cycling test and suggest that the observed plateau in the [HHb] signal toward the end of a RI test is not representative of an upper limit in O2 extraction.



Author(s):  
Gabriel Kolesny Tricot ◽  
Fabiula Isoton Isoton Novelli ◽  
Lucieli Teresa Cambri

AbstractThis study aimed to assess whether obesity and/or maximal exercise can change 24 h cardiac autonomic modulation and blood pressure in young men. Thirty-nine men (n: 20; 21.9±1.8 kg·m−2, and n: 19; 32.9±2.4 kg·m−2) were randomly assigned to perform a control (non-exercise) and an experimental day exercise (after maximal incremental test). Cardiac autonomic modulation was evaluated through frequency domain heart rate variability (HRV). Obesity did not impair the ambulatory HRV (p>0.05), however higher diastolic blood pressure during asleep time (p=0.02; group main effect) was observed. The 24 h and awake heart rate was higher on the experimental day (p<0.05; day main effect), regardless of obesity. Hypotension on the experimental day, compared to control day, was observed (p<0.05). Obesity indicators were significantly correlated with heart rate during asleep time (Rho=0.34 to 0.36) and with ambulatory blood pressure(r/Rho=0.32 to 0.53). Furthermore, the HRV threshold workload was significantly correlated with ambulatory heart rate (r/Rho=− 0.38 to−0.52). Finally, ambulatory HRV in obese young men was preserved; however, diastolic blood pressure was increased during asleep time. Maximal exercise caused heart rate increase and 24h hypotension, with decreased cardiac autonomic modulation in the first hour, regardless of obesity.



Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3911
Author(s):  
Francisco Javier Martínez-Noguera ◽  
Cristian Marín-Pagán ◽  
Jorge Carlos-Vivas ◽  
Pedro E. Alcaraz

2S-Hesperidin is a flavanone (flavonoid) found in high concentrations in citrus fruits. It has an antioxidant and anti-inflammatory effects, improving performance in animals. This study investigated the effects of chronic intake of an orange extract (2S-hesperidin) or placebo on non-oxidative/glycolytic and oxidative metabolism markers and performance markers in amateur cyclists. A double-blind, randomized, placebo-controlled trial was carried out between late September and December 2018. Forty amateur cyclists were randomized into two groups: one taking 500 mg/day 2S-hesperidin and the other taking 500 mg/day placebo (microcellulose) for eight weeks. All participants completed the study. An incremental test was used to evaluate performance, and a step test was used to measure oxygen consumption, carbon dioxide, efficiency and oxidation of carbohydrates and fat by indirect calorimetry. The anaerobic power (non-oxidative) was determined using Wingate tests (30 s). After eight weeks supplementation, there was an increase in the incremental test in estimated functional threshold power (FTP) (3.2%; p ≤ 0.05) and maximum power (2.7%; p ≤ 0.05) with 2S-hesperdin compared to placebo. In the step test, there was a decrease in VO2 (L/min) (−8.3%; p ≤ 0.01) and VO2R (mL/kg/min) (−8.9%; p ≤ 0.01) at VT2 in placebo. However, there were no differences between groups. In the Wingate test, there was a significant increase (p ≤ 0.05) in peak and relative power in both groups, but without differences between groups. Supplementation with an orange extract (2S-hesperdin) 500 mg/day improves estimated FTP and maximum power performance in amateur cyclists.



2015 ◽  
Vol 47 ◽  
pp. 768
Author(s):  
Mayara V. Damasceno ◽  
Leonardo A. Pasqua ◽  
Adriano E. Lima-Silva ◽  
Rômulo Bertuzzi


1989 ◽  
Vol 67 (3) ◽  
pp. 1234-1244 ◽  
Author(s):  
P. T. Schumacker ◽  
R. W. Samsel

Normally, tissue O2 uptake (VO2) is set by metabolic activity rather than O2 delivery (QO2 = blood flow X arterial O2 content). However, when QO2 is reduced below a critical level, VO2 becomes limited by O2 supply. Experiments have shown that a similar critical QO2 exists, regardless of whether O2 supply is reduced by progressive anemia, hypoxemia, or reduction in blood flow. This appears inconsistent with the hypothesis that O2 supply limitation must occur by diffusion limitation, since very different mixed venous PO2 values have been seen at the critical point with hypoxic vs. anemic hypoxia. The present study sought to begin clarifying this paradox by studying the theoretical relationship between tissue O2 supply and uptake in the Krogh tissue cylinder model. Steady-state O2 uptake was computed as O2 delivery to tissue representative of whole body was gradually lowered by anemic, hypoxic, or stagnant hypoxia. As diffusion began to limit uptake, the fall in VO2 was computed numerically, yielding a relationship between QO2 and VO2 in both supply-independent and O2 supply-dependent regions. This analysis predicted a similar biphasic relationship between QO2 and VO2 and a linear fall in VO2 at O2 deliveries below a critical point for all three forms of hypoxia, as long as intercapillary distances were less than or equal to 80 microns. However, the analysis also predicted that O2 extraction at the critical point should exceed 90%, whereas real tissues typically extract only 65–75% at that point. When intercapillary distances were larger than approximately 80 microns, critical O2 extraction ratios in the range of 65–75% could be predicted, but the critical point became highly sensitive to the type of hypoxia imposed, contrary to experimental findings. Predicted gas exchange in accord with real data could only be simulated when a postulated 30% functional peripheral O2 shunt (arterial admixture) was combined with a tissue composed of Krogh cylinders with intercapillary distances of less than or equal to 80 microns. The unrealistic efficacy of tissue O2 extraction predicted by the Krogh model (in the absence of postulated shunt) may be a consequence of the assumed homogeneity of tissues, because real tissues exhibit many forms of heterogeneity among capillary units. Alternatively, the failure of the original Krogh model to fully predict tissue O2 supply dependency may arise from basic limitations in the assumptions of that model.



2005 ◽  
Vol 30 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Sebastien Libicz ◽  
Belle Roels ◽  
Gregoire P. Millet

While the physiological adaptations following endurance training are relatively well understood, in swimming there is a dearth of knowledge regarding the metabolic responses to interval training (IT). The hypothesis tested predicted that two different endurance swimming IT sets would induce differences in the total time the subjects swam at a high percentage of maximal oxygen consumption [Formula: see text]. Ten trained triathletes underwent an incremental test to exhaustion in swimming so that the swimming velocity associated with [Formula: see text][Formula: see text] could be determined. This was followed by a maximal 400-m test and two intermittent sets at [Formula: see text] (a) 16 × 50 m with 15-s rest (IT50); (b) 8 × 100 m with 30-s rest (IT100). The times sustained above 95% [Formula: see text] (68.50 ± 62.69 vs. 145.01 ± 165.91 sec) and 95% HRmax (146.67 ± 131.99 vs. 169.78 ± 203.45 sec, p = 0.54) did not differ between IT50 and IT100 (values are mean ± SD). In conclusion, swimming IT sets of equal time duration at [Formula: see text] but of differing work-interval durations led to slightly different [Formula: see text] and HR responses. The time spent above 95% of [Formula: see text]max was twice as long in IT100 as in IT50, and a large variability between mean [Formula: see text] and HR values was also observed. Key words: interval training, maximal oxygen consumption, triathletes



1981 ◽  
Vol 91 (1) ◽  
pp. 239-254
Author(s):  
P. R. H. Wilkes ◽  
R. L. Walker ◽  
D. G. McDonald ◽  
C. M. Wood

Blood gases, acid-base status, plasma ions, respiration, ventilation and cardiovascular function were measured in white suckers, using standard cannulation methods. Basic respiratory parameters under normoxia were compared to those in the active, pelagic rainbow trout and in other benthic teleosts. Sustained environmental hyperoxia (350–550 torr) increased arterial O2 (102–392 torr) and venous O2 (17–80 torr) tensions so that blood O2 transport occurred entirely via physical solution. Dorsal aortic blood pressure and heart rate fell, the latter due to an increase in vagal tone. Ventilation volume declined markedly (by 50%) due to a decrease in ventilatory stroke volume, but absolute O2 extraction rose so that O2 consumption was unaffected. While the preceding effects were stable with time, arterial and venous CO2 tensions approximately doubled within 4 h, and continued to increase gradually thereafter. This CO2 retention caused an acidosis (7.993–7.814) which was gradually compensated by an accumulation of plasma [HCO3−]. However, even after 72 h, arterial pH remained significantly depressed by 0.10 units. The gradual rise in plasma [HCO3−] was accompanied by a progressive fall in both [Na+] and [Cl−]; [K+] and [Ca2+] remained unchanged. The responses of the sucker to hyperoxia are compared to those of the rainbow trout.



2017 ◽  
Vol 57 (1) ◽  
pp. 117-128
Author(s):  
Dalton M. Pessôa Filho ◽  
Leandro O.C. Siqueira ◽  
Astor R. Simionato ◽  
Mário A.C. Espada ◽  
Daniel S. Pestana ◽  
...  

AbstractThe purpose of this study was to investigate whether a tethered-swimming incremental test comprising small increases in resistive force applied every 60 seconds could delineate the isocapnic region during rapidly-incremented exercise. Sixteen competitive swimmers (male, n = 11; female, n = 5) performed: (a) a test to determine highest force during 30 seconds of all-out tethered swimming (Favg) and the ΔF, which represented the difference between Favg and the force required to maintain body alignment (Fbase), and (b) an incremental test beginning with 60 seconds of tethered swimming against a load that exceeded Fbase by 30% of ΔF followed by increments of 5% of ΔF every 60 seconds. This incremental test was continued until the limit of tolerance with pulmonary gas exchange (rates of oxygen uptake and carbon dioxide production) and ventilatory (rate of minute ventilation) data collected breath by breath. These data were subsequently analyzed to determine whether two breakpoints defining the isocapnic region (i.e., gas exchange threshold and respiratory compensation point) were present. We also determined the peak rate of O2 uptake and exercise economy during the incremental test. The gas exchange threshold and respiratory compensation point were observed for each test such that the associated metabolic rates, which bound the heavy-intensity domain during constant-work-rate exercise, could be determined. Significant correlations (Spearman’s) were observed for exercise economy along with (a) peak rate of oxygen uptake (ρ = .562; p < 0.025), and (b) metabolic rate at gas exchange threshold (ρ = −.759; p < 0.005). A rapidly-incremented tethered-swimming test allows for determination of the metabolic rates that define zones for domain-specific constant-work-rate training.



1983 ◽  
Vol 245 (5) ◽  
pp. G697-G702 ◽  
Author(s):  
P. T. Nowicki ◽  
B. S. Stonestreet ◽  
N. B. Hansen ◽  
A. C. Yao ◽  
W. Oh

Regional and total gastrointestinal (GI) blood flow, O2 delivery, and whole-gut O2 extraction and O2 consumption were measured before and 30, 60, and 120 min after feeding in nonanesthetized, awake 2-day-old piglets. Cardiac output and blood flow to kidneys, heart, brain, and liver were also determined. Blood flow was measured using the radiolabeled microsphere technique. In the preprandial condition, total GI blood flow was 106 +/- 9 ml X min-1 X 100 g-1, while O2 extraction was 17.2 +/- 0.9% and O2 consumption was 1.99 +/- 0.19 ml O2 X min-1 X 100 g-1. Thirty minutes after slow gavage feeding with 30 ml/kg artificial pig milk, O2 delivery to the GI tract and O2 extraction rose significantly (P less than 0.05) by 35 +/- 2 and 33 +/- 2%, respectively. The increase in O2 delivery was effected by a significant increase in GI blood flow, which was localized to the mucosal-submucosal layer of the small intestine. O2 uptake by the GI tract increased 72 +/- 4% 30 min after feeding. Cardiac output and blood flow to non-GI organs did not change significantly with feeding, whereas arterial hepatic blood flow decreased significantly 60 and 120 min after feeding. The piglet GI tract thus meets the oxidative demands of digestion and absorption by increasing local blood flow and tissue O2 extraction.



1993 ◽  
Vol 265 (5) ◽  
pp. H1769-H1777 ◽  
Author(s):  
G. J. Crystal ◽  
S. J. Kim ◽  
M. R. Salem

Myocardial O2 uptake (MVO2) and related variables were compared in right and left ventricles (RV and LV, respectively) during isovolemic hemodilution (HD) alone and combined with isoproterenol (Iso) infusion in 13 isoflurane-anesthetized open-chest dogs. Measurements of myocardial blood flow (MBF) obtained with radioactive microspheres were used to calculate MVO2. Lactate extraction (Lacext) was determined. The study consisted of two experimental series: 1) graded HD (dextran) to hematocrit (Hct) of 10% and 2) Iso (0.1 microgram.kg-1.min-1 iv) during moderate HD (Hct = 18 +/- 1%). In series 1, arteriovenous O2 content difference in both ventricles decreased in parallel with reduced arterial O2 content caused by HD, i.e., percent O2 extraction was constant; MVO2 was maintained by proportional increases in MBF. In series 2, Iso during moderate HD raised MVO2 (RV, +156%; LV, +80%). Higher MVO2 was satisfied by combination of increased MBF and O2 extraction in RV and by increased MBF alone in LV. Lacext remained consistent with adequate myocardial O2 delivery throughout study. Conclusions were that 1) both RV and LV tolerated extreme HD (Hct = 10%) because blood flow reserves were sufficient to fully compensate for reduced arterial O2 content; 2) significant cardiac reserve was evident during HD, which could be recruited Iso; and 3) because increase in MVO2 in RV caused by Iso in presence of HD was partially satisfied by increased O2 extraction, the absence of augmented O2 extraction during HD alone was not due to impaired release of O2 from diluted red blood cells.(ABSTRACT TRUNCATED AT 250 WORDS)



Sign in / Sign up

Export Citation Format

Share Document