scholarly journals Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram

2021 ◽  
Vol 12 ◽  
Author(s):  
Neha Sharma ◽  
Daniel Ostas ◽  
Horatiu Rotar ◽  
Philipp Brantner ◽  
Florian Markus Thieringer

Reconstruction of cranial defects is an arduous task for craniomaxillofacial surgeons. Additive manufacturing (AM) or three-dimensional (3D) printing of titanium patient-specific implants (PSIs) made its way into cranioplasty, improving the clinical outcomes in complex surgical procedures. There has been a significant interest within the medical community in redesigning implants based on natural analogies. This paper proposes a workflow to create a biomimetic patient-specific cranial prosthesis with an interconnected strut macrostructure mimicking bone trabeculae. The method implements an interactive generative design approach based on the Voronoi diagram or tessellations. Furthermore, the quasi-self-supporting fabrication feasibility of the biomimetic, lightweight titanium cranial prosthesis design is assessed using Selective Laser Melting (SLM) technology.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


Author(s):  
Lakshya P. Rathore ◽  
Naina Verma

Additive manufacturing (AM) is a novel technique that despite having been around for more than 35 years, has been underutilized. Its great advantage lies in the basic fact that it is incredibly customizable. Since its use was recognized in various fields of medicine like orthopaedics, otorhinolaryngology, ophthalmology etc, it has proved to be one of the most promising developments in most of them. Customizable orthotics, prosthetics and patient specific implants and tracheal splints are few of its advantages. And in the future too, the combination of tissue engineering with AM is believed to produce an immense change in biological tissue replacement.


2020 ◽  
Vol 9 (3) ◽  
pp. 832 ◽  
Author(s):  
Dave Chamo ◽  
Bilal Msallem ◽  
Neha Sharma ◽  
Soheila Aghlmandi ◽  
Christoph Kunz ◽  
...  

The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.


2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


2012 ◽  
Vol 5 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Per Dérand ◽  
Lars-Erik Rännar ◽  
Jan-M Hirsch

The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes®, Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and mesh to replace resected bone that can function as a carrier for bone or bone substitutes were designed and tested during reconstructive maxillofacial surgery. A clinically fit, well within the requirements for what is needed and obtained using traditional free hand bending of commercially available devices, or even higher precision, was demonstrated in ablative surgery in four patients.


2021 ◽  
Author(s):  
Yiu Yan LEUNG ◽  
Jasper Ka Chai LEUNG ◽  
Alvin Tsz Choi LI ◽  
Nathan En Zuo TEO ◽  
Karen Pui Yan LEUNG ◽  
...  

Abstract The design and fabrication of three-dimensional (3D) -printed patient-specific implants (PSIs) for orthognathic surgery are customarily outsourced to commercial companies. We propose a protocol of designing PSIs and surgical guides by orthognathic surgeons-in-charge instead for wafer-less Le Fort I osteotomy. The aim of this prospective study was to evaluate the accuracy and post-operative complications of PSIs that are designed in-house for Le Fort I osteotomy. The post-operative cone beam computer tomography (CBCT) model of the maxilla was superimposed to the virtual surgical planning to compare the discrepancies of pre-determined landmarks, lines and principal axes between the two models. Twenty-five patients (12 males, 13 females) were included. The median linear deviations of the post-operative maxilla of the x, y and z axes were 0.74 mm, 0.75 mm and 0.72 mm, respectively. The deviations in the principal axes for pitch, yaw and roll were 1.40°, 0.90° and 0.60°, respectively. There were no post-operative complications related to the PSIs in the follow-up period. The 3D-printed PSIs designed in-house for wafer-less Le Fort I osteotomy are accurate and safe. Its clinical outcomes and accuracy are comparable to commercial PSIs for orthognathic surgery.


2018 ◽  
Vol 55 (3) ◽  
pp. 431-433
Author(s):  
Gheorghe Muhlfay ◽  
Zoltan Fabian ◽  
Radu Neagoe ◽  
Karin Ursula Horvath

The developments in the biocompatible materials and additive manufacturing technologies gave birth to new possibilities in reconstructive surgery. In addition to revolutionizing the diagnostic possibilities, the modern medical imaging has led to the development of surgical planning software. Using these state-of-the-art technologies, a new standard of care is rising with the spread of patient specific implants. Our view in studying and using these materials and technologies goes beyond their biocompatibility, focusing on the functional and esthetic impact of these restorations. Our aim is to show their potential benefits and pitfalls presenting a couple of posttraumatic and oncological application possibilities, focusing on the new presurgical planning, choice of materials and manufacturing technologies.


Author(s):  
Daniel L. Cohen ◽  
Evan Malone ◽  
Hod Lipson ◽  
Lawrence J. Bonassar

A major challenge in orthopaedic tissue engineering is the generation of cell-seeded implants with structures that mimic native tissue, both in terms of anatomic geometries and intratissue cell distributions. By combining the strengths of injection molding tissue engineering with those of Solid Freeform Fabrication (SFF), three-dimensional pre-seeded implants were fabricated without custom-tooling, enabling efficient production of patient-specific implants. The incorporation of SFF technology also enables the fabrication of geometrically complex, multiple-material implants with spatially heterogeneous cell distributions that could not otherwise be produced. Using a custom-built robotic SFF platform and gel deposition tools, alginate hydrogel was used with calcium sulfate as a crosslinking agent to produce pre-seeded living implants of arbitrary geometries. The process was determined to be sterile and viable at 94±5%. The GAG production was found to be about half that of a similarly molded samples. The compressive elastic modulus was determined to be 1.462±0.113 kPa.


2021 ◽  
pp. 175319342110040
Author(s):  
Nazlı Tümer ◽  
Olivier Hiemstra ◽  
Yvonne Schreurs ◽  
Gerald A. Kraan ◽  
Johan van der Stok ◽  
...  

We studied the three-dimensional (3-D) shape variations and symmetry of the lunate to evaluate whether a contralateral shape-based approach to design patient-specific implants for treatment of Kienböck’s disease is accurate. A 3-D statistical shape model of the lunate was built using the computed tomography scans of 54 lunate pairs and shape symmetry was evaluated based on an intraclass correlation analysis. The lunate shape was not bilaterally symmetrical in (1) the angle scaphoid surface – radius-ulna surface, (2) the dorsal side and the length of the side adjacent to the triquetrum, (3) the orientation of the volar surface, (4) the width of the side adjacent to the scaphoid, (5) the skewness in the coronal plane and (6) the curvature of bone articulating with the hamate and capitate. These findings suggest that using the contralateral lunate to design patient-specific lunate implants may not be as accurate as it is intended.


Sign in / Sign up

Export Citation Format

Share Document