scholarly journals The Transient Receptor Potential Vanilloid 4 Channel and Cardiovascular Disease Risk Factors

2021 ◽  
Vol 12 ◽  
Author(s):  
Kenichi Goto ◽  
Takanari Kitazono

Vascular endothelial cells regulate arterial tone through the release of nitric oxide and other diffusible factors such as prostacyclin and endothelium derived hyperpolarizing factors. Alongside these diffusible factors, contact-mediated electrical propagation from endothelial cells to smooth muscle cells via myoendothelial gap junctions, termed endothelium-dependent hyperpolarization (EDH), plays a critical role in endothelium-dependent vasodilation in certain vascular beds. A rise in intracellular Ca2+ concentration in endothelial cells is a prerequisite for both the production of diffusible factors and the generation of EDH, and Ca2+ influx through the endothelial transient receptor potential vanilloid 4 (TRPV4) ion channel, a nonselective cation channel of the TRP family, plays a critical role in this process in various vascular beds. Emerging evidence suggests that the dysregulation of endothelial TRPV4 channels underpins endothelial dysfunction associated with cardiovascular disease (CVD) risk factors, including hypertension, obesity, diabetes, and aging. Because endothelial dysfunction is a precursor to CVD, a better understanding of the mechanisms underlying impaired TRPV4 channels could lead to novel therapeutic strategies for CVD prevention. In this mini review, we present the current knowledge of the pathophysiological changes in endothelial TRPV4 channels associated with CVD risk factors, and then explore the underlying mechanisms involved.

2014 ◽  
Vol 143 (5) ◽  
pp. 559-575 ◽  
Author(s):  
Jose Mercado ◽  
Rachael Baylie ◽  
Manuel F. Navedo ◽  
Can Yuan ◽  
John D. Scott ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.


Haematologica ◽  
2019 ◽  
Vol 105 (11) ◽  
pp. 2572-2583
Author(s):  
Shaoxin Yang ◽  
Wei Lu ◽  
Chong Zhao ◽  
Yuanmei Zhai ◽  
Yanyu Wei ◽  
...  

Remodeling of adipocyte morphology and function plays a critical role in prostate cancer development. We previously reported that leukemia cells secrete growth differentiation factor 15 (GDF15),which remodels the residual bone marrow (BM) adipocytes into small adipocytes and is associated with a poor prognosis in acute myeloid leukemia (AML) patients. However, little is known about how GDF15 drives BM adipocyte remodeling. In this study, we examined the role of the transient receptor potential vanilloid (TRPV) channels in the remodeling of BM adipocytes exposed to GDF15. We found that TRPV4 negatively regulated GDF15-induced remodeling of BM adipocytes. Furthermore, transforming growth factor-β type II receptor (TGFβRII) was identified as the main receptor for GDF15 on BM adipocytes. PI3K inhibitor treatment reduced GDF15-induced pAKT, identifying PI3K/AKT as the downstream stress response pathway. Subsequently, GDF15 reduced the expression of the transcription factor Forkhead box C1 (FOXC1) in BM adipocytes subjected to RNA-seq screening and Western blot analyse. Moreover, it was also confirmed that FOXC1 combined with the TRPV4 promoter by the Chip-qPCR experiments, which suggests that FOXC1 mediates GDF15 regulation of TRPV4. In addition, an AML mouse model exhibited smaller BM adipocytes, whereas the TRPV4 activator 4α-phorbol 12,13-didecanoate (4αPDD) partly rescued this process and increased survival. In conclusion, TRPV4 plays a critical role in BM adipocyte remodeling induced by leukemia cells, suggesting that targeting TRPV4 may constitute a novel strategy for AML therapy.


2017 ◽  
Vol 312 (6) ◽  
pp. F1081-F1089 ◽  
Author(s):  
Yue Li ◽  
Hongxiang Hu ◽  
Jin-Bin Tian ◽  
Michael X. Zhu ◽  
Roger G. O’Neil

The large-conductance Ca2+-activated K+ channel, BK (KCNMA1), is expressed along the connecting tubule (CNT) and cortical collecting duct (CCD) where it underlies flow- and Ca2+-dependent K+ secretion. Its activity is partially under the control of the mechanosensitive transient receptor potential vanilloid type 4 (TRPV4) Ca2+-permeable channel. Recently, we identified three small-/intermediate-conductance Ca2+-activated K+ channels, SK1 (KCNN1), SK3 (KCNN3), and IK1 (KCNN4), with notably high Ca2+-binding affinities, that are expressed in CNT/CCD and may be regulated by TRPV4-mediated Ca2+ influx. The K+-secreting CCD mCCDcl1 cells, which express these channels, were used to determine whether SK1/3 and IK1 are activated on TRPV4 stimulation and whether they contribute to Ca2+ influx and activation of BK. Activation of TRPV4 (GSK1016790A) modestly depolarized the membrane potential and robustly increased intracellular Ca2+, [Ca2+]i. Inhibition of both SK1/3 and IK1 by application of apamin and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), respectively, further depolarized the membrane potential and markedly suppressed the TRPV4-mediated rise in [Ca2+]i. Application of BK inhibitor iberiotoxin after activation of TRPV4 without apamin/TRAM-34 also reduced [Ca2+]i and further intensified membrane depolarization, demonstrating BK involvement. However, the BK-dependent effects on [Ca2+]i and membrane potential were largely abolished by pretreatment with apamin and TRAM-34, identical to that observed by separately suppressing TRPV4-mediated Ca2+ influx, demonstrating that SK1/3-IK1 channels potently contribute to TRPV4-mediated BK activation. Our data indicate a direct correlation between TRPV4-mediated Ca2+ signal and BK activation but where early activation of SK1/3 and IK1 channels are critical to sufficiently enhanced Ca2+ entry and [Ca2+]i levels required for activation of BK.


2019 ◽  
Author(s):  
Ruth A. Pumroy ◽  
Amrita Samanta ◽  
Yuhang Liu ◽  
Taylor E.T. Hughes ◽  
Siyuan Zhao ◽  
...  

SUMMARYTransient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac function, immunity, and cancer. Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of Cannabis sativa, is a potent activator of TRPV2 and also modulates other transient receptor potential (TRP) channels. Here, we determined structures of the full-length TRPV2 channel in a CBD-bound state in detergent and in PI(4,5)P2 enriched nanodiscs by cryo-electron microscopy. CBD interacts with TRPV2 through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand and lipid binding sites in other TRP channels. Comparison between apo- and two CBD-bound TRPV2 structures reveals that the S4-S5 linker plays a critical role in channel gating upon CBD binding. The TRPV2 “vanilloid” pocket, which is critical for ligand-dependent gating in other TRPV channels, stays unoccupied by annular lipids, PI(4,5)P2, or CBD. Together these results provide a foundation to further understand TRPV channel gating properties and their divergent physiological functions and to accelerate structure-based drug design.


2020 ◽  
Author(s):  
Mathieu Botte ◽  
Alexander K. C. Ulrich ◽  
Ricardo Adaixo ◽  
David Gnutt ◽  
Andreas Brockmann ◽  
...  

ABSTRACTThe human transient receptor potential vanilloid 4 (hTRPV4) ion channel plays a critical role in a variety of biological processes. Whilst the activation of hTRPV4 gating properties has been reported for a broad spectrum of stimuli, including synthetic 4α-phorbols, the molecular basis of the activation is poorly understood. Here we report the novel cryo-EM structure of the hTRPV4 determined in the presence of the archetypical phorbol acid agonist, 4α-PDD. Complementary mutagenesis experiments support the EM-identified binding site as well as allowing rationalization of disruptive mutants located outside of the 4α-PDD binding site. This work represents the first structural information of hTRPV4 in a ligand-induced open conformation. Together, our data reveal the underlying molecular mechanisms resulting in the opening of the central pore and ion-channel activation and provide a structural template for designing inhibitors targeting the open-state conformation of hTRPV4.


2013 ◽  
Vol 451 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Elaine D. Por ◽  
Ruben Gomez ◽  
Armen N. Akopian ◽  
Nathaniel A. Jeske

Post-translational modifications in TRPV1 (transient receptor potential vanilloid 1) play a critical role in channel activity. Phosphorylation of serine/threonine residues within the N- and C-termini of TRPV1 are implicated in receptor sensitization and activation. Conversely, TRPV1 desensitization occurs via a calcium-dependent mechanism and leads to receptor de-phosphorylation. Importantly, we recently demonstrated that TRPV1 association with β-arrestin-2 is critical to receptor desensitization via its ability to scaffold the phosphodiesterase PDE4D5 to the receptor, regulating TRPV1 phosphorylation. In the present study, we demonstrate that phosphorylation of TRPV1 and β-arrestin-2 regulates this association at the membrane. Under serum-free media conditions, we observed a significant decrease in TRPV1 and β-arrestin-2 association in transfected CHO (Chinese-hamster ovary) cells. Pharmacological activation of the kinases PKA (protein kinase A) and PKC (protein kinase C) led to a robust increase in TRPV1 and β-arrestin-2 association, whereas inhibition of PKA and PKC decreased association. Previously, we identified potential PKA residues (Ser116, Thr370) in the N-terminus of TRPV1 modulated by β-arrestin-2. In the present study we reveal that the phosphorylation status of Thr370 dictates the β-arrestin-2 and TRPV1 association. Furthermore, we demonstrate that CK2 (casein kinase 2)-mediated phosphorylation of β-arrestin-2 at Thr382 is critical for its association with TRPV1. Taken together, the findings of the present study suggest that phosphorylation controls the association of TRPV1 with β-arrestin-2.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ruth A Pumroy ◽  
Amrita Samanta ◽  
Yuhang Liu ◽  
Taylor ET Hughes ◽  
Siyuan Zhao ◽  
...  

Transient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac function, immunity, and cancer. Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of Cannabis sativa, is an activator of TRPV2 and also modulates other transient receptor potential (TRP) channels. Here, we determined structures of the full-length rat TRPV2 channel in apo and CBD-bound states in nanodiscs by cryo-electron microscopy. We show that CBD interacts with TRPV2 through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand and lipid binding sites in other TRP channels. CBD-bound TRPV2 structures revealed that the S4-S5 linker plays a critical role in channel gating upon CBD binding. Additionally, nanodiscs permitted us to visualize two distinct TRPV2 apo states in a lipid environment. Together these results provide a foundation to further understand TRPV channel gating, their divergent physiological functions, and to accelerate structure-based drug design.


Sign in / Sign up

Export Citation Format

Share Document