scholarly journals Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

2016 ◽  
Vol 6 ◽  
Author(s):  
Dongling Wang ◽  
Zhenzhen Gao ◽  
Peiyong Du ◽  
Wei Xiao ◽  
Qiuping Tan ◽  
...  
2021 ◽  
Vol 22 (10) ◽  
pp. 5069
Author(s):  
Naoto Sano ◽  
Annie Marion-Poll

Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8′-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.


2016 ◽  
Vol 104 ◽  
pp. 54-70 ◽  
Author(s):  
Ming-Yue Sun ◽  
Xi-Ling Fu ◽  
Qiu-Ping Tan ◽  
Li Liu ◽  
Min Chen ◽  
...  

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Worarad Kanjana ◽  
Tomohiro Suzuki ◽  
Kazuo Ishii ◽  
Toshinori Kozaki ◽  
Masayuki Iigo ◽  
...  

2021 ◽  
Author(s):  
Riwen Fei ◽  
Siyang Duan ◽  
Jiayuan Ge ◽  
Tianyi Sun ◽  
Xiaomei Sun

Abstract Seed dormancy and germination is a complex process, which is affected by external environmental conditions and internal factors independently or mutually. Phytohormones play an important regulatory role in this process. ABA was the main phytohormone affecting herbaceous peony seed dormancy release. However, the mechanism of ABA in the dormancy release of herbaceous peony needs to be further explored. Here, transcriptome data was screened from the perspective of ABA metabolism, and significantly differentially expressed PlNCED1 and PlNCED2 were obtained. We found that their expression trends were positively correlated with ABA content. Among them, PlNCED2 had a stronger regulatory effect on ABA content and was more sensitive to exogenous ABA. Overexpression and silencing of PlNCEDs in callus could affect the expression of PlCYP707As and the content of endogenous ABA. Through the observation of seed germination of Arabidopsis thaliana (A. thaliana), we found PlNCED1 and PlNCED2 promoted seed dormancy, and the promotion effect of PlNCED2 was more obvious. In general, PlNCED1 and PlNCED2 participated in the dormancy release of herbaceous peony seeds by regulating the accumulation of endogenous ABA. Our work can reveal the molecular mechanism and related theories of ABA involved in herbaceous peony seed dormancy release.


2006 ◽  
Vol 45 (6) ◽  
pp. 942-954 ◽  
Author(s):  
Anthony A. Millar ◽  
John V. Jacobsen ◽  
John J. Ross ◽  
Chris A. Helliwell ◽  
Andrew T. Poole ◽  
...  
Keyword(s):  

2012 ◽  
Vol 75 ◽  
pp. 74-82 ◽  
Author(s):  
Kourosh Vahdati ◽  
Asadolah Aslani Aslamarz ◽  
Majid Rahemi ◽  
Darab Hassani ◽  
Charles Leslie

2019 ◽  
Vol 144 (4) ◽  
pp. 244-256 ◽  
Author(s):  
Lisa Tang ◽  
Shweta Chhajed ◽  
Tripti Vashisth ◽  
Mercy A. Olmstead ◽  
James W. Olmstead ◽  
...  

To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach (Prunus persica), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respectively, using an RNA sequencing analysis. The peak of total budbreak occurred 6 weeks earlier in the HC-treated trees (at 32 DAT) than the nontreated trees (at 74 DAT). There were 1312 and 1095 differentially expressed genes (DEGs) at 3 and 7 DAT, respectively. At 3 DAT, DEGs related to oxidative stress, including the response to hypoxia, lipid oxidation, and reactive oxygen species (ROS) metabolic process, were upregulated in HC-treated buds. Additionally, DEGs encoding enzymes for ROS scavenging and the pentose phosphate pathway were upregulated at 3 DAT but they were not differently expressed at 7 DAT, indicating a temporary demand for defense mechanisms against HC-triggered oxidative stress. Upregulation of DEGs for cell division and development at 7 DAT, which were downregulated at 3 DAT, suggests that cell activity was initially suppressed but was enhanced within 7 DAT. At 7 DAT, DEGs related to cell wall degradation and modification were upregulated, which was possibly responsible for the burst of buds. The results of this study strongly suggest that HC induces transient oxidative stress shortly after application, leading to the release of bud dormancy and, subsequently, causing an increase in cell activity and cell wall loosening, thereby accelerating budbreak in peach.


1991 ◽  
Vol 116 (3) ◽  
pp. 500-506 ◽  
Author(s):  
Edward F. Durner ◽  
Thomas J. Gianfagna

The heat requirement for flower bud growth of container-grown peach trees [Prunus persica (L.) Batsch. cvs. Redhaven and Springold] in the greenhouse varied inversely and linearly with the length of the cold-storage period (SC) provided to break bud dormancy. Ethephon reduced the rest-breaking effectiveness of the 5C treatment. Buds from ethephon-treated trees grew more slowly than buds from untreated trees upon exposure to 20 to 25C, resulting in later bloom dates. The effect of ethephon on flower bud hardiness in field-grown trees of `Jerseydawn' and `Jerseyglo' was studied using exotherm analysis after deacclimation treatments. Bud deacclimation varied with reacclimating temperature (7 or 21 C), cultivar, ethephon treatment, and sampling date. All buds were more susceptible to injury in March than in January or February. Buds reacclimated more rapidly at 21C than at 7C. `Jerseyglo' reacclimated more rapidly than `Jerseydawn'. Untreated buds were less hardy and also reacclimated more rapidly than treated buds. Ethephon enhanced flower bud hardiness in three distinct ways: 1) it decreased the mean low-temperature exotherm of pistils, 2) it increased the number of buds that supercooled after exposure to reacclimating temperatures, and 3) it decreased the rate of deacclimation, especially at 21C. Ethephon prolongs flower bud dormancy by increasing the chilling requirement. The rate at which flower buds become increasingly sensitive to moderate temperatures in late winter and spring is thus reduced by ethephon. Thus, ethephon delays deacclimation during winter and delays bloom in the spring. Chemical name used: (2-chloroethyl) phosphoric acid (ethephon).


2014 ◽  
Vol 34 (2) ◽  
pp. 274-293 ◽  
Author(s):  
Angel J. Matilla ◽  
Nestor Carrillo-Barral ◽  
María del Carmen Rodríguez-Gacio

Sign in / Sign up

Export Citation Format

Share Document