scholarly journals The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression

2016 ◽  
Vol 7 ◽  
Author(s):  
Fang Cheng ◽  
Zhihui Cheng ◽  
Huanwen Meng ◽  
Xiangwei Tang
Planta ◽  
2012 ◽  
Vol 236 (5) ◽  
pp. 1629-1638 ◽  
Author(s):  
Dorota Soltys ◽  
Anna Rudzińska-Langwald ◽  
Agnieszka Gniazdowska ◽  
Anita Wiśniewska ◽  
Renata Bogatek

2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


2021 ◽  
Vol 2 ◽  
Author(s):  
Adrienne H. K. Roeder

Abstract During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.


2014 ◽  
Author(s):  
Nikolai Slavov ◽  
David Botstein ◽  
Amy Caudy

Yeast cells grown in culture can spontaneously synchronize their respiration, metabolism, gene expression and cell division. Such metabolic oscillations in synchronized cultures reflect single-cell oscillations, but the relationship between the oscillations in single cells and synchronized cultures is poorly understood. To understand this relationship and the coordination between metabolism and cell division, we collected and analyzed DNA-content, gene-expression and physiological data, at hundreds of time-points, from cultures metabolically-synchronized at different growth rates, carbon sources and biomass densities. The data enabled us to extend and generalize our mechanistic model, based on ensemble average over phases (EAP), connecting the population-average gene-expression of asynchronous cultures to the gene-expression dynamics in the single-cells comprising the cultures. The extended model explains the carbon-source specific growth-rate responses of hundreds of genes. Our physiological data demonstrate that the frequency of metabolic cycling in synchronized cultures increases with the biomass density, suggesting that this cycling is an emergent behavior, resulting from the entraining of the single-cell metabolic cycle by a quorum-sensing mechanism, and thus underscoring the difference between metabolic cycling in single cells and in synchronized cultures. Measurements of constant levels of residual glucose across metabolically synchronized cultures indicate that storage carbohydrates are required to fuel not only the G1/S transition of the division cycle but also the metabolic cycle. Despite the large variation in profiled conditions and in the scale of their dynamics, most genes preserve invariant dynamics of coordination with each other and with the rate of oxygen consumption. Similarly, the G1/S transition always occurs at the beginning, middle or end of the high oxygen consumption phases, analogous to observations in human and drosophila cells. These results highlight evolutionary conserved coordination among metabolism, cell growth and division.


2009 ◽  
Vol 166 (14) ◽  
pp. 1576-1580 ◽  
Author(s):  
Leonardo Magneschi ◽  
Rasika Lasanthi Kudahettige ◽  
Amedeo Alpi ◽  
Pierdomenico Perata

1994 ◽  
Vol 86 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Donghua Liu ◽  
Wusheng Jiang ◽  
Wei Wang ◽  
Fengmei Zhao ◽  
Cheng Lu

2018 ◽  
Vol 41 (6) ◽  
pp. 1468-1482 ◽  
Author(s):  
Kieron D. Edwards ◽  
Naoki Takata ◽  
Mikael Johansson ◽  
Manuela Jurca ◽  
Ondřej Novák ◽  
...  

Development ◽  
1984 ◽  
Vol 83 (Supplement) ◽  
pp. 31-40
Author(s):  
Adrian P. Bird

Vertebrate DNA is methylated at a high proportion of cytosine residues in the sequence CpG, and it has been suggested that the distribution of methylated and non-methylated CpGs in a given cell type influences the pattern of gene expression in those cells. Since a DNA methylation pattern is normally transmitted faithfully to daughter cells via cell division, this idea suggests an origin for stable, clonally inherited patterns of gene expression. This article discusses some of the current evidence for a relationship between DNA methylation and gene expression. Although the evidence is incomplete, it appears already that the relationship is variable: transcription of some genes is repressed by the presence of 5-methylcytosine at certain CpGs, and may be controlled by methylation, while transcription of other genes is indifferent to methylation. In attempting to explain this variability it is helpful to adopt an evolutionary perspective.


Sign in / Sign up

Export Citation Format

Share Document