scholarly journals Metabolite Fruit Profile Is Altered in Response to Source–Sink Imbalance and Can Be Used as an Early Predictor of Fruit Quality in Nectarine

2021 ◽  
Vol 11 ◽  
Author(s):  
María Paz Covarrubias ◽  
Victoria Lillo-Carmona ◽  
Lorena Melet ◽  
Gianfranco Benedetto ◽  
Diego Andrade ◽  
...  

Peaches and nectarines [Prunus persica (L.) Batsch] are among the most exported fresh fruit from Chile to the Northern Hemisphere. Fruit acceptance by final consumers is defined by quality parameters such as the size, weight, taste, aroma, color, and juiciness of the fruit. In peaches and nectarines, the balance between soluble sugars present in the mesocarp and the predominant organic acids determines the taste. Biomass production and metabolite accumulation by fruits occur during the different developmental stages and depend on photosynthesis and carbon export by source leaves. Carbon supply to fruit can be potentiated through the field practice of thinning (removal of flowers and young fruit), leading to a change in the source–sink balance favoring fruit development. Thinning leads to fruit with increased size, but it is not known how this practice could influence fruit quality in terms of individual metabolite composition. In this work, we analyzed soluble metabolite profiles of nectarine fruit cv “Magique” at different developmental stages and from trees subjected to different thinning treatments. Mesocarp metabolites were analyzed throughout fruit development until harvest during two consecutive harvest seasons. Major polar compounds such as soluble sugars, amino acids, organic acids, and some secondary metabolites were measured by quantitative 1H-NMR profiling in the first season and GC-MS profiling in the second season. In addition, harvest and ripening quality parameters such as fruit weight, firmness, and acidity were determined. Our results indicated that thinning (i.e., source–sink imbalance) mainly affects fruit metabolic composition at early developmental stages. Metabolomic data revealed that sugar, organic acid, and phenylpropanoid pathway intermediates at early stages of development can be used to segregate fruits impacted by the change in source–sink balance. In conclusion, we suggest that the metabolite profile at early stages of development could be a metabolic predictor of final fruit quality in nectarines.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11538
Author(s):  
Yu-fei Li ◽  
Weijia Jiang ◽  
Chunhong Liu ◽  
Yuqi Fu ◽  
Ziyuan Wang ◽  
...  

Kiwifruit (Actinidia) is becoming increasingly popular worldwide due to its favorable flavour and high vitamin C content. However, quality parameters vary among cultivars. To determine the differences in quality and metabolic parameters of kiwifruit, we monitored the growth processes of ‘Kuilv’ (Actinidia arguta), ‘Hongyang’ (Actinidia chinensis) and ‘Hayward’ (Actinidia deliciosa). We found that ‘Kuilv’ required the shortest time for fruit development, while ‘Hayward’ needed the longest time to mature. The fruit size of ‘Hayward’ was the largest and that of ‘Kuilv’ was the smallest. Furthermore, ‘Hongyang’ showed a double-S shape of dry matter accumulation, whereas ‘Kuilv’ and ‘Hayward’ showed a linear or single-S shape pattern of dry matter accumulation during development. The three cultivars demonstrated the same trend for total soluble solids accumulation, which did not rise rapidly until 90–120 days after anthesis. However, the accumulation of organic acids and soluble sugars varied among the cultivars. During later fruit development, the content of glucose, fructose and quinic acid in ‘Kuilv’ fruit was far lower than that in ‘Hongyang’ and ‘Hayward’. On the contrary, ‘Kuilv’ had the highest sucrose content among the three cultivars. At maturity, the antioxidative enzymatic systems were significantly different among the three kiwifruit cultivars. ‘Hongyang’ showed higher activities of superoxide dismutase than the other cultivars, while the catalase content of ‘Hayward’ was significantly higher than that of ‘Hongyang’ and ‘Kuilv’. These results provided knowledge that could be implemented for the marketing, handling and post-harvest technologies of the different kiwifruit cultivars.


2019 ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae , ( Pyrus bretschneideri , Malus domestica , Prunus avium , Prunus persica , Fragaria vesca , Pyrus communis and Rubus occidentalis ). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios . Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1 , Pbr019034.1 , Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion: We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit . These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality. Keywords : BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters


1992 ◽  
pp. 691-694 ◽  
Author(s):  
S. Salakpetch ◽  
S. Chandraparnik ◽  
H. Hiranpradit ◽  
U. Punnachit

2018 ◽  
pp. 93-105
Author(s):  
Borbála Bíró ◽  
Anita Dudás ◽  
Heléna Wass-Matics ◽  
Tamás Kocsis ◽  
Sándor Pabar ◽  
...  

The use of microbial inoculums is a part of sustainable agricultural practices. Among various bioeffectors, the phosphorus-mobilizing bacteria are frequently used. The objective of this study is to investigate the effect of some industrial biofertilizer inoculums, of containing P-mobilizing bacteria on the quantity and some quality parameters of tomato fruits. Spore-forming industrial Bacillus amyloliquefaciens FZB42 (Rhizovital) as single inoculums and combinations with other Bacillus strains (Biorex) were applied on Solanum lycopersicon Mill. var. Mobil test plant. Soil microbial counts, phosphorus availability, yield and fruit quality, such as total soluble solids (TSS) content and sugars (glucose, fructose) were assessed. The results found that single industrial inoculums of FZB42 product had positive effect on P-availability and fruit quality in the pots. Fruit quality parameters, TSS content, soluble sugars were significantly improved (p<0.05). Such better fruit taste was correlated significantly by the most probable number (MPN) microbial counts. Use of such bioeffector products is supported by the positive interrelation among measured soil characteristics and inside healthy quality parameters of tomato fruits.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, (Pyrus bretschneideri, Malus domestica, Prunus avium, Prunus persica, Fragaria vesca, Pyrus communis and Rubus occidentalis). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1, Pbr019034.1, Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality.


2010 ◽  
Vol 37 (6) ◽  
pp. 545 ◽  
Author(s):  
Simona Nardozza ◽  
Helen L. Boldingh ◽  
Annette C. Richardson ◽  
Guglielmo Costa ◽  
Hinga Marsh ◽  
...  

This study identifies the developmental processes contributing to variation in green-fleshed kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa) fruit dry matter content (DM) and fresh weight (FW) by comparing genotypes with either high or low final DM. Results are compared with the model for fruit development, the tomato (Solanum lycopersicum L.). Differences in final composition were attributable to a higher rate of starch accumulation from 70 days after anthesis in high DM genotypes, with no other consistent differences in accumulation of soluble sugars or organic acids. High DM genotypes had 70% higher starch content and differed from low DM genotypes in the allocation of carbon between storage and other components. DM was negatively correlated with final fruit FW only in high DM genotypes, whereas starch was a constant proportion of dry weight (DW), suggesting a dilution effect rather than an interaction between fruit size and carbohydrate metabolism. Compared with tomato, the organic acids, particularly quinic acid, contributed more to estimated osmotic pressure during growth in FW than the soluble sugars, regardless of final composition or size. Seed mass per unit FW was highest in high DM genotypes, suggesting a previously unrecognised role for kiwifruit seeds in accumulation of carbohydrate by the pericarp. Anatomical comparisons also identified a role for differences in the packing of the two principal cell types, with an increased frequency of the larger cell type correlated with reduced DM. These genotypes demonstrate that kiwifruit differs from tomato in the role of starch as the principal stored carbohydrate, the reduced importance of dilution by growth in FW and the more minor role of the sugars compared with the organic acids during fruit development.


2019 ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, ( Pyrus bretschneideri , Malus domestica , Prunus avium , Prunus persica , Fragaria vesca , Pyrus communis and Rubus occidentalis ). Based on the classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An intra-species synteny analysis detected 78 syntenic gene pairs among the seven Rosaceae species. Dispersed gene duplication occurred frequently in all the investigated species. Different modes of duplicated gene pairs identified in each investigated species revealed that the Ka/Ks ratios were less than one, indicating that they evolved through purifying selection. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, we selected five genes for verification as assessed by qRT-PCR. Pbr020016.1 , Pbr019034.1 , Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion: We have thoroughly annotated the BAHD superfamily genes and performed a comprehensive comparative analysis of their colinearity, phylogenetic relationships and gene duplication patterns in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality. Keywords : BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhu ◽  
Yudong Li ◽  
Haiqiong Yang ◽  
Ke He ◽  
Keyi Tang

Gut microbiota during early life could influence host fitness in vertebrates. Studies on how gut microbiota colonize the gut in birds using frequent sampling during early developmental stages and how shifts in microbiota diversity influence host growth are lacking. Here, we examine the microbiome profiles of 151 fecal samples from 14 young crested ibis (Nipponia nippon), an endangered bird species, collected longitudinally across 13 time points during the early stages of development and investigated their correlation with host growth. Gut diversity showed a non-linear change during development, which involved multiple colonization and extinction events, mainly associated with Proteobacteria and Firmicutes. Gut microbiota in young crested ibis became more similar with increasing age. In addition, gut microbiota exhibited a strong temporal structure and two specific developmental stages; the beginning of the latter stage coincided with the introduction of fresh loach, with a considerable increase in the relative abundance of Fusobacteria and several Firmicutes, which may be involved in lipid metabolism. Crested ibis chick growth rate was negatively correlated with gut microbiota diversity and negatively associated with the abundance of Halomonadaceae, Streptococci, Corynebacteriaceae, and Dietziaceae. Our findings highlight the importance of frequent sampling when studying microbiome development during early stages of development of vertebrates. The role of microbial diversity in host growth during the early stages of development of birds warrants further investigations.


2001 ◽  
Vol 11 (4) ◽  
pp. 539-546 ◽  
Author(s):  
P. Perkins-Veazie ◽  
J.K. Collins

Small fruit are rich in several types of phytochemicals, vitamins, and minerals. These compounds have health functional properties that may protect humans from cardiovascular disease and certain cancers. Several of these phytochemicals, such as dietary fiber, anthocyanins, and polyphenolics, also contribute to small fruit quality. Other components contribute to appearance and taste. Nonvolatile organic acids contribute to the perceived sourness of small fruit and changes in levels can alter visual color by affecting cellular pH and anthocyanin structure. The soluble sugars glucose, fructose, and sucrose contribute directly to the perceived sweetness of the fruit and provide carbohydrates for other metabolic functions such as phenolic and ascorbic acid synthesis.


Sign in / Sign up

Export Citation Format

Share Document