scholarly journals Only Extreme Fluctuations in Light Levels Reduce Lettuce Growth Under Sole Source Lighting

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruqayah Bhuiyan ◽  
Marc W. van Iersel

The cost of providing lighting in greenhouses and plant factories can be high. In the case of variable electricity prices, providing most of the light when electricity prices are low can reduce costs. However, it is not clear how plants respond to the resulting fluctuating light levels. We hypothesized that plants that receive a constant photosynthetic photon flux density (PPFD) will produce more biomass than those grown under fluctuating light levels. To understand potential growth reductions caused by fluctuating light levels, we quantified the effects of fluctuating PPFD on the photosynthetic physiology, morphology, and growth of ‘Little Gem’ and ‘Green Salad Bowl’ lettuce. Plants were grown in a growth chamber with dimmable white LED bars, alternating between high and low PPFDs every 15 min. The PPFDs were ∼400/0, 360/40, 320/80, 280/120, 240/160, and 200/200 μmol⋅m−2⋅s–1, with a photoperiod of 16 h and a DLI of ∼11.5 mol⋅m−2⋅day–1 in all treatments. CO2 was ∼800 μmol⋅mol–1. Plants in the 400/0 μmol⋅m−2⋅s–1 treatment had ∼69% lower An,30 (net assimilation averaged over 15 min at high and 15 min at low PPFD) than plants grown at a PPFD of 320/80 μmol⋅m−2⋅s–1 (or treatments with smaller PPFD fluctuations). The low An,30 in the 400/0, and to a lesser extent the 360/40 μmol⋅m−2⋅s–1 treatment was caused by low net assimilation at 360 and 400 μmol⋅m−2⋅s–1. Plants grown at 400/0 μmol⋅m−2⋅s–1 also had fewer leaves and lower chlorophyll content compared to those in other treatments. The four treatments with the smallest PPFD fluctuations produced plants with similar numbers of leaves, chlorophyll content, specific leaf area (SLA), dry mass, and leaf area. Chlorophyll content, An,30, and dry mass were positively correlated with each other. Our results show that lettuce tolerates a wide range of fluctuating PPFD without negative effects on growth and development. However, when fluctuations in PPFD are extreme (400/0 or 360/40 μmol⋅m−2⋅s–1), chlorophyll levels and An,30 are low, which can explain the low poor growth in these treatments. The ability of lettuce to tolerate a wide range of fluctuating light levels suggests that PPFD can be adjusted in response to variable electricity pricing.

HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1253-1257 ◽  
Author(s):  
Sandra B. Wilson ◽  
Keiko Iwabuchi ◽  
Nihal C. Rajapakse ◽  
Roy E. Young

Broccoli (Brassica oleracea L. Botrytis group `Green Duke') seeds were cultured in vitro photoautotrophically (without sugar in the medium) or photomixotrophically (with sugar in the medium) for 3 weeks at 23 °C and 150 μmol·m-2·s-1 photosynthetic photon flux (PPF). Vessels were then stored at 5 °C under 1.6, 4.1, or 8.6 μmol·m-2·s-1 of white (400-800 nm), red (600-700 nm), or blue (400-500 nm) light. Concentrations of CO2 inside the vessels were monitored until equilibrium was reached. Light compensation point was reached at 3.5 μmol·m-2·s-1 for photoautotrophic seedlings and at 6.5 μmol·m-2·s-1 for photomixotrophic seedlings. Therefore, in the long-term storage experiment, seedlings were stored for 4, 8, or 12 weeks at 5 °C in darkness or under 5 μmol·m-2·s-1 (average light compensation point) of white, red, or blue light. Illumination during storage was necessary to maintain dry mass, leaf area, and regrowth potentials of in vitro seedlings. All seedlings stored in darkness were of poor quality and died when transferred to the greenhouse. Red light during storage increased seedling dry mass and chlorophyll content and improved overall appearance, whereas blue light decreased chlorophyll content and increased stem elongation. The addition of 2% sucrose to media increased dry mass and leaf area and maintained overall seedling quality during illuminated storage. However, plantlets stored for more than 4 weeks did not survive poststorage greenhouse conditions, regardless of light treatment.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 637
Author(s):  
Paul Kusuma ◽  
Boston Swan ◽  
Bruce Bugbee

The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photon capture and yield. Photons in the green region reverse these blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies in other species have not consistently shown the benefits of photons in the green region on leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) regions at photosynthetic photon flux densities of 200 and 500 µmol m−2 s−1 in lettuce, cucumber and tomato. As expected, increasing the fraction of photons in the blue region consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of photons in the green region had minimal effects on leaf area and dry mass in lettuce and cucumber. Photons in the green region were more potent at a lower fraction of photons in the blue region. Photons in the green region increased stem and petiole length in cucumber and tomato, which is a classic shade avoidance response. These results suggest that high-light crop species might respond to the fraction of photons in the green region with either shade tolerance (leaf expansion) or shade avoidance (stem elongation).


2006 ◽  
Vol 18 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Antonio José Dias Vieira ◽  
Dario Alves de Oliveira ◽  
Taís Cristina Bastos Soares ◽  
Ivan Schuster ◽  
Newton Deniz Piovesan ◽  
...  

This work aimed to identify the quantitative trait loci (QTL) associated with photosynthesis and growth and productivity traits of soybean and to study possible associations between these traits by the analysis of coincidence of QTL in linkage groups (LGs). Thus, populations of recombinant inbred lines (RILs) of the F7 and F8 generations derived from the cross between the varieties BARC-8 and Garimpo were used. The traits evaluated were net assimilation rate of CO2 under saturating light (Asat), potential photosynthesis rate (Pmax), leaf area (A), specific leaf area (SLA), specific leaf nitrogen (N); root (W R), nodule (W N), stem (W ST), leaf (W L), pod (W P) and plant dry mass (W T); nodule (nN), seed (n s), and pod number (nP); seed fresh mass per plant (W S), one-hundred seed fresh mass (W HS) and seed protein percentage (P%). It was possible to identify the following QTL associated with the following soybean traits: SLA, Asat, N, W R, W ST, W L, W T, W P, W HS, n s and nP, indicating that the RIL population has a great potential for mapping loci associated with quantitative traits of the soybean crop. The correlations between the soybean traits were partially confirmed by coincidence of QTL.


1982 ◽  
Vol 30 (3) ◽  
pp. 347 ◽  
Author(s):  
RM Gleadow ◽  
KS Rowan

The clumping of invading seedlings of Pittosporum undulatum Vent. around the butts of established trees is due partly to the site-dependent survival of seedlings. particularly during summer. P. undulatum seedlings were very drought-tolerant when grown at moderately low temperatures (21.4°C day/17.8°C night compared with 27.4°C day/23.9°C night) and in deep shade. Plants droughted at 5°C higher temperatures and higher photon flux densities stopped transpiring and wilted 10-13 days earlier than those droughted under cooler, densely shaded conditions. Well watered seedlings had higher relative growth rates and net assimilation rates when grown under higher temperatures and photon flux densities. Control seedlings were more leafy when grown under low light. as reflected by the specific leaf area, leaf area ratio and root/shoot ratios. The adverse effects of higher photon flux densities and temperatures on the drought tolerance of P. undulatum seedlings support the hypothesis that survlval of invading seedlings in their first year is dependent on the microclimate.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yongran Ji ◽  
Theoharis Ouzounis ◽  
Henk J. Schouten ◽  
Richard G. F. Visser ◽  
Leo F. M. Marcelis ◽  
...  

The recent development of light-emitting diodes (LEDs) and their application in modern horticulture stimulated studies demonstrating that additional far-red (FR) radiation (700–800 nm) increases plant dry mass. This effect of FR has been explained by improved photosynthesis and/or plant architecture. However, the genotypic variation in this response is largely unknown. Here, we aim to explore and explain the genotypic variation in growth responses to additional FR. We expected the genotypic variation in the responses of plant dry mass to additional FR. Further, we hypothesized that a significant improvement of both net assimilation rate (NAR) and leaf area ratio (LAR) is responsible for a strong dry mass increase under additional FR, while some genotypes respond only marginally or even negatively in NAR or LAR under FR, thus resulting in a weak FR effect on plant dry mass. To test these hypotheses, we grew 33 different tomato genotypes for 21 days with 0, 25, or 100 μmol m–2 s–1 of FR added to a common white + red LED background lighting of 150 μmol m–2 s–1. Genotypes responded similarly with respect to plant height, stem dry mass, and shoot:root ratio; i.e., they all increased with increasing FR. However, the response of total plant dry mass varied among genotypes. We categorized the genotypes into three groups (strongly, moderately, and weakly responding groups) based on their relative response in total plant dry mass to FR. Growth component analysis revealed that the strongly responding genotypes increased strongly in NAR rather than LAR. The weakly responding genotypes, however, showed a substantial increase in LAR but not NAR. The increase in LAR was due to the increase in specific leaf area. Leaf mass fraction, which is the other component of LAR, decreased with FR and did not differ between groups. In conclusion, tomato genotypes that increased strongly in NAR in response to FR were able to achieve a more substantial increase in dry mass than did other genotypes. This is the first study to explain the differences in growth responses of a large number of tomato genotypes toward FR in their light environment.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 988-991 ◽  
Author(s):  
Yoshiaki Kitaya ◽  
Genhua Niu ◽  
Toyoki Kozai ◽  
Maki Ohashi

Lettuce (Lactuca sativa L. cv. Summer-green) plug transplants were grown for 3 weeks under 16 combinations of four levels (100, 150, 200, and 300 μmol·m-2·s-1) of photosynthetic photon flux (PPF), two photoperiods (16 and 24 h), and two levels of CO2 (400 and 800 μmol·mol-1) in growth chambers maintained at an air temperature of 20 ±2 °C. As PPF increased, dry mass (DM), percent DM, and leaf number increased, while ratio of shoot to root dry mass (S/R), ratio of leaf length to leaf width (LL/LW), specific leaf area, and hypocotyl length decreased. At the same PPF, DM was increased by 25% to 100% and 10% to 100% with extended photoperiod and elevated CO2 concentration, respectively. Dry mass, percent DM, and leaf number increased linearly with daily light integral (DLI, the product of PPF and photoperiod), while S/R, specific leaf area, LL/LW and hypocotyl length decreased as DLI increased under each CO2 concentration. Hypocotyl length was influenced by PPF and photoperiod, but not by CO2 concentration. Leaf morphology, which can be reflected by LL/LW, was substantially influenced by PPF at 100 to 200 μmol·m-2·s-1, but not at 200 to 300 μmol·m-2·s-1. At the same DLI, the longer photoperiod promoted growth under the low CO2 concentration, but not under the high CO2 concentration. Longer photoperiod and/or higher CO2 concentration compensated for a low PPF.


1998 ◽  
Vol 41 (2) ◽  
pp. 207-211 ◽  
Author(s):  
José Pires de Lemos Filho ◽  
Ricardo Jenner Duarte

The aim of this study was to verify the dry mass partition of the seed reserves during the initial growth of Swietenia macrophylla seedlings, in the dark, and at low levels of photosynthetically active radiation: 0.125; 3.12 and 52 µ mol.m-2.s-1. After 50 days, the dry mass of the seed reserves did not differ with treatments, but the total dry mass and leaf area were higher in the seedlings under higher light treatment. No difference in root/shoot ratio was observed between treatments, but the leaf area ratio was lower at higher light. Only the seedlings grown at 52 µ mol.m-2.s-1 showed a positive dry mass increase in relation to the mobilized seed reserves. With the values of the net increase of the seedling mass, a linear equation was adjusted in relation to the light levels, permitting to determine 3.76 µ mol.m-2.s-1 as the seedling light compensation point. These results explain the shade tolerance of the S. macrophylla seedlings.


Revista CERES ◽  
2015 ◽  
Vol 62 (5) ◽  
pp. 460-468 ◽  
Author(s):  
Germani Concenço ◽  
Luiz Alberto Staut ◽  
Igor Vinicius Talhari Correia ◽  
Luiz Carlos Yamamoto Vieira ◽  
César José da Silva

RESUMOCrambe (Crambe abyssinica) has a cropping cycle of around 90 days, being suitable as an alternative to the second grain crop planted after soybean is harvested in the Center West region of Brazil. It is necessary to understand the growth and development dynamics of crambe plants in order to allow correct management of the production factors. This study aimed to describe the growth and development parameters of crambe plants under presence or absence of interspecific competition. The experiment was installed in the fall-winter 2011 in an Oxisoil, in completely randomized blocks design with three replications. Treatments comprised crambe plants growing either in presence or absence of interspecific simulated competition, throughout the cropping cycle. Plants were collected for the growth analysis every 15 days from harvest until 75 days after emergence. Growth parameters leaf area (AF), dry mass of stems/culms (MSC), leaves (MSF) and total (MST) dry mass, leaf area index (IAF), absolute (TCA) and relative (TCR) growth rates, net assimilation rate (TAL), specific leaf area (AFE), leaf area duration (DAF), leaf area ratio (RAF) and leaf mass ratio (RMF) were determined for the crop plants, subjected or not to competition, as well as for the simulated competitor. Crambe is a low competitive crop, being the competition more severe until 60-70 days after emergence. Besides, crop performance under field conditions was properly described by the net assimilation rate (TAL), which is also affected by the leaf area duration (DAF) and leaf mass ratio (RMF).


2014 ◽  
Vol 32 (2) ◽  
pp. 205-212 ◽  
Author(s):  
Fánor Casierra-Posada ◽  
Esteban Zapata-Casierra ◽  
Daniel A. Chaparro-Chaparro

To determine the effects of light quality on the growth indices of plants, Pencas Blancas cultivar chard plantlets were grown for 2 months under five different light treatments, obtained by filtering sunlight through colored polyethylene films. The treatments included: red, blue, green, yellow and transparent cover colors. A transparent cover (white light) was used as the control. The colored covers affected the plant growth. The plants grown under the yellow cover presented a better behavior with regards to growth, taken as: total dry weight per plant, leaf area, specific leaf area, absolute growth rate, relative growth rate, harvestable dry matter and root to shoot ratio. The dry matter partitioning in the leaves and roots was affected by the light quality, but not in the petioles, with a higher accumulation of dry mass in the leaves of plants grown under the yellow cover. As a consequence of the enhanced leaf area in the plants under the yellow cover, they also had the highest water uptake. On the other hand, the highest net assimilation rate value was found in plants grown under the transparent cover. These results open up the possibility of using yellow colored cover in leafy green vegetables, especially in chard plants grown under controlled conditions.


Author(s):  
J. S. Nwogha ◽  
G. A. Agenbag ◽  
J. E. Obidiegwu ◽  
C. O. Amadi

Seven canola genotypes selected from early and mid-maturing groups of canola genotypes presently planted in the Western Cape canola production area were grown in 3 litre plastic bags filled with a mixture of sand and compost at ratio of 1:1 and irrigated with fully balanced nutrient solution at EC=2.0 in two glasshouses at night/day temperature regimes of 10/15˚C and 15/20˚C. Plant heights were measured at 14 days interval from 28 to 84 days after planting (DAP). Plants were sampled for leaf area (LA) and above ground dry mass (DM) at budding, flowering and seed physiological maturity stages. Plant growth rates (PGR) from planting to budding, from budding to flowering and from flowering to physiological maturity growth stages were calculated. Relative growth rates (RGR) and net assimilation rates (NAR) from budding to flowering and from flowering to physiological maturity stages were also calculated. Days after planting, GDD and PTU at budding, flowering and physiological maturity were correlated with leaf area, dry mass, number of pods plant-1   and pod dry mass plant-1 at budding, flowering and physiological maturity stages to determine whether there were relationships between the variables. The study showed that by increasing night/day temperature from 10/15˚C to 15/20˚C plant height, number of leaves plant-1 at budding stage, leaf area at budding , plant growth rate (PGR) from planting to budding stage and relative growth rate (RGR) from budding to flowering stage were increased. However, PGR from budding to physiological maturity, RGR from flowering to physiological maturity, net assimilation rate (NAR) from budding to flowering stage, leaf area at flowering and physiological maturity stages, as well as  number of flower stems, number of pods  plant-1, above ground total dry mass at flowering and physiological maturity  stages were  decreased. Pod dry mass at physiological maturity decreased by 22.24% to 40.35% for different genotypes which clearly demonstrated the variations in sensitivity of canola genotypes to increasing night/day temperatures and also indicates that canola crop can be genetically improved for heat tolerance.


Sign in / Sign up

Export Citation Format

Share Document