scholarly journals Verticillium dahliae Inoculation and in vitro Propagation Modify the Xylem Microbiome and Disease Reaction to Verticillium Wilt in a Wild Olive Genotype

2021 ◽  
Vol 12 ◽  
Author(s):  
Manuel Anguita-Maeso ◽  
José Luis Trapero-Casas ◽  
Concepción Olivares-García ◽  
David Ruano-Rosa ◽  
Elena Palomo-Ríos ◽  
...  

Host resistance is the most practical, long-term, and economically efficient disease control measure for Verticillium wilt in olive caused by the xylem-invading fungus Verticillium dahliae (Vd), and it is at the core of the integrated disease management. Plant’s microbiome at the site of infection may have an influence on the host reaction to pathogens; however, the role of xylem microbial communities in the olive resistance to Vd has been overlooked and remains unexplored to date. This research was focused on elucidating whether in vitro olive propagation may alter the diversity and composition of the xylem-inhabiting microbiome and if those changes may modify the resistance response that a wild olive clone shows to the highly virulent defoliating (D) pathotype of Vd. Results indicated that although there were differences in microbial communities among the different propagation methodologies, most substantial changes occurred when plants were inoculated with Vd, regardless of whether the infection process took place, with a significant increase in the diversity of bacterial communities when the pathogen was present in the soil. Furthermore, it was noticeable that olive plants multiplied under in vitro conditions developed a susceptible reaction to D Vd, characterized by severe wilting symptoms and 100% vascular infection. Moreover, those in vitro propagated plants showed an altered xylem microbiome with a decrease in total OTU numbers as compared to that of plants multiplied under non-aseptic conditions. Overall, 10 keystone bacterial genera were detected in olive xylem regardless of infection by Vd and the propagation procedure of plants (in vitro vs nursery), with Cutibacterium (36.85%), Pseudomonas (20.93%), Anoxybacillus (6.28%), Staphylococcus (4.95%), Methylobacterium-Methylorubrum (3.91%), and Bradyrhizobium (3.54%) being the most abundant. Pseudomonas spp. appeared as the most predominant bacterial group in micropropagated plants and Anoxybacillus appeared as a keystone bacterium in Vd-inoculated plants irrespective of their propagation process. Our results are the first to show a breakdown of resistance to Vd in a wild olive that potentially may be related to a modification of its xylem microbiome and will help to expand our knowledge of the role of indigenous xylem microbiome on host resistance, which can be of use to fight against main vascular diseases of olive.

2020 ◽  
Author(s):  
Manuel Anguita-Maeso ◽  
José Luis Trapero ◽  
Concepción Olivares-García ◽  
David Ruano-Rosa ◽  
Elena Palomo-Ríos ◽  
...  

AbstractHost resistance is the most practical, long-term and economically efficient disease control measure for Verticillium wilt in olive caused by the xylem-invading fungus Verticillium dahliae (Vd), and it is at the core of the integrated disease management. Plant’s microbiome at the site of infection may have an influence on the host reaction to pathogens; however, the role of xylem microbial communities in the olive resistance to Vd has been overlooked and remain unexplored to date. This research was focused on elucidating whether in vitro olive propagation may alter the diversity and composition of the xylem-inhabiting microbiome and if those changes may modify the resistance response that a wild olive clone shows to the highly virulent defoliating (D) pathotype of Vd. Results indicated that although there were differences in microbial communities among the different propagation methodologies, most substantial changes occurred when plants were inoculated with Vd, regardless whether the infection process took place, with a significant increase in the diversity of bacterial communities when the pathogen was present in the soil. Furthermore, it was noticeable that olive plants multiplied under in vitro conditions developed a susceptible reaction to D Vd, characterized by severe wilting symptoms and 100% vascular infection. Moreover, those in vitro propagated plants showed an altered xylem microbiome with a decrease in total OTU numbers as compared to that of plants multiplied under non-aseptic conditions. Overall, 10 keystone bacterial genera were detected in olive xylem regardless infection by Vd and the propagation procedure of plants (in vitro vs nursery), with Cutibacterium (36.85%), Pseudomonas (20.93%), Anoxybacillus (6.28%), Staphylococcus (4.95%), Methylobacterium-Methylorubrum (3.91%), and Bradyrhizobium (3.54%) being the most abundant. Pseudomonas spp. appeared as the most predominant bacterial group in micropropagated plants and Anoxybacillus appeared as a keystone bacterium in Vd-inoculated plants irrespective of their propagation process. Our results are first to show a breakdown of resistance to Vd in a wild olive that potentially maybe related to a modification of its xylem microbiome, and will help to expand our knowledge of the role of indigenous xylem microbiome on host resistance which can be of use to fight against main vascular diseases of olive.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Yalin Zhang ◽  
Lihong Zhao ◽  
Zili Feng ◽  
Hongfu Guo ◽  
Hongjie Feng ◽  
...  

Verticillium dahliae Kleb., the causal pathogen of vascular wilt, can seriously reduce the yield and quality of many crops, including cotton (Gossypium hirsutum). To control the harm caused by V. dahliae, considering the environmental pollution of chemical fungicides and their residues, the strategy of plant nutrition regulation is becoming increasingly important as an eco-friendly method for disease control. A new compound micronutrient fertilizer (CMF) found in our previous study could reduce the damage of cotton Verticillium wilt and increase yield. However, there is little information about the mode of action of CMF to control this disease. In the present study, we evaluated the role of CMF against V. dahliae and its mechanism of action in vitro and in vivo. In the laboratory tests, we observed that CMF could inhibit hyphal growth, microsclerotia germination, and reduce sporulation of V. dahliae. Further studies revealed that the biomass of V. dahliae in the root and hypocotyl of cotton seedlings treated with CMF were significantly reduced compared with the control, and these results could explain the decline in the disease index of cotton Verticillium wilt. Furthermore, those key genes involved in the phenylpropanoid metabolism pathway, resistance-related genes defense, and nitric oxide signaling pathway were induced in cotton root and hypocotyl tissue when treated with CMF. These results suggest that CMF is a multifaceted micronutrient fertilizer with roles in inhibiting the growth, development, and pathogenicity of V. dahliae and promoting cotton growth.


2021 ◽  
Vol 22 (23) ◽  
pp. 13041
Author(s):  
Wanting Huang ◽  
Yalin Zhang ◽  
Jinglong Zhou ◽  
Feng Wei ◽  
Zili Feng ◽  
...  

Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton’s defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.


2010 ◽  
Vol 79 (3) ◽  
pp. 1118-1123 ◽  
Author(s):  
Amanda McBride ◽  
Kamlesh Bhatt ◽  
Padmini Salgame

ABSTRACTPublished work indicates that the contribution of Toll-like receptor 2 (TLR2) to host resistance during acuteMycobacterium tuberculosisinfection is marginal. However, in these studies, TLR2 participation in the memory immune response toM. tuberculosiswas not determined. The substantialin vitroevidence thatM. tuberculosisstrongly triggers TLR2 on dendritic cells and macrophages to bring about either activation or inhibition of antigen-presenting cell (APC) functions, along with accumulating evidence that memory T cell development can be calibrated by TLR signals, led us to question the role of TLR2 in host resistance to secondary challenge withM. tuberculosis. To address this question, a memory immunity model was employed, and the response of TLR2-deficient (TLR2 knockout [TLR2KO]) mice following a secondary exposure toM. tuberculosiswas compared to that of wild-type (WT) mice based on assessment of the bacterial burden, recall response, phenotype of recruited T cells, and granulomatous response. We found that upon rechallenge withM. tuberculosis, both WT and TLR2KO immune mice displayed similarly enhanced resistance to infection in comparison to their naïve counterparts. The frequencies ofM. tuberculosis-specific gamma interferon (IFN-γ)-producing T cells, the phenotypes of recruited T cells, and the granulomatous responses were also similar between WT and TLR2KO immune mice. Together, the findings from this study indicate that TLR2 signaling does not influence memory immunity toM. tuberculosis.


2013 ◽  
Vol 21 (2) ◽  
pp. 87-93
Author(s):  
Elżbieta Węgrzynowicz-Lesiak ◽  
Anna Jarecka Boncela ◽  
Justyna Góraj ◽  
Marian Saniewski

ABSTRACT The knowledge about the role of jasmonates in ethylene production by pathogenic fungi is ambiguous. In this study, we describe the effect of methyl jasmonate (JA-Me) and gums formed in stone fruit trees on the growth and in vitro ethylene production by mycelium of Verticillium dahliae and Alternaria alternata. Methyl jasmonate at concentrations of 100, 250 and 500 μg·cm-3 inhibited the mycelium growth of V. dahliae and A. alternata, proportionally to the concentrations used. After 8 days of incubation, JA-Me at concentration of 500 μg·cm-3 limited the area of mycelium of these pathogens by 7-8 times but did not entirely inhibited the pathogen growth. Addition of gums produced by trees of cherry and peach to a medium containing 40 μg·cm-3 JA-Me did not influence the mycelium growth of V. dahliae, but gums of plum and apricot trees stimulated mycelium growth, in comparison to JA-Me only. Methyl jasmonate at concentrations of 2 and 40 μg·cm-3 stimulated the ethylene production by mycelium of V. dahliae and A. alternata. It is possible that methyl jasmonate stimulated ethylene production in mycelium of these pathogens through interaction with some fractions of galactans formed during hydrolysis of agar. The lack of interaction of JA-Me with polysaccharides of stone fruit trees gums concerning ethylene production was documented and it needs further explanation.


2021 ◽  
Author(s):  
Zhizhong Gong ◽  
Junsheng Qi ◽  
Aifang Ma ◽  
Dingpeng Zhang ◽  
Guangxing Wang ◽  
...  

Verticillium wilt is a severe plant disease, increasing the plant resistance to this disease is a critical challenge worldwide. Here, we report that the Verticillium dahliae (V. dahliae)-secreted Aspf2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro, but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton. VDAL interacts with Arabidopsis E3 ligases PUB25 and PUB26 (PUBs) and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUBs in planta. Besides, the pub25 pub26 shows higher resistance to V. dahliae than the wild type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing wilt disease depends on MYB6. These results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.


2019 ◽  
Vol 20 (18) ◽  
pp. 4325 ◽  
Author(s):  
Xue-Yang Wang ◽  
Kang-Hui Wu ◽  
Hui-Lin Pang ◽  
Ping-Zhen Xu ◽  
Mu-Wang Li ◽  
...  

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens of the silkworm. Cytochrome c (cytc) showed a significant response to BmNPV infection in our previous transcriptome study. However, little is known about the role of Bombyx mori cytc (Bmcytc) in resistance to BmNPV infection. In this study, the expression levels analysis of Bmcytc showed stable expression levels in selected tissues of the resistant strain AN following BmNPV infection, while there was downregulation in the susceptible strain p50, except in the malpighian tubule. To further study the role of Bmcytc in viral infection, Bmcytc was knocked down with siRNA in vitro, resulting in significant downregulation of selected downstream genes of the mitochondrial pathway, including Bmapaf, Bmcaspase-Nc, and Bmcaspase-1; this was also confirmed by overexpression of Bmcytc using the pIZT/V5-His-mCherry insect vector, except Bmcaspase-1. Moreover, knockdown of Bmcytc significantly promoted the infection process of BmNPV in vitro, while the infection was inhibited by overexpression of Bmcytc at the early stage and subsequently increased rapidly. Based on these results, we concluded that Bmcytc plays a vital role in BmNPV infection by regulating the mitochondrial apoptosis pathway. Our work provides valuable data for the clarification of the mechanism of silkworm resistance to BmNPV infection.


2018 ◽  
Vol 108 (5) ◽  
pp. 561-567 ◽  
Author(s):  
Timothy J. Waller ◽  
Jennifer Vaiciunas ◽  
Christine Constantelos ◽  
Peter V. Oudemans

Blueberry anthracnose, caused by Colletotrichum fioriniae, is a pre- and postharvest disease of cultivated highbush blueberry (Vaccinium corymbosum). During disease development, the pathogen undergoes several lifestyle changes during host colonization, including epiphytic, quiescent, and necrotrophic phases. It is not clear, however, what if any host signals alter the pattern of colonization during the initial epiphytic phase and infection. This research investigated the role of blueberry floral extracts (FE) on fungal development. Results show that FE significantly increased both the quantity and rate of secondary conidiation and appressorial formation in vitro, suggesting that floral components could decrease the minimum time required for infection. Activity of FE was readily detected in water collected from field samples, where secondary conidiation and appressorial formation decreased as rainwater collections were further removed from flowers. A comparison of FE from four blueberry cultivars with different levels of field susceptibility revealed that appressorial formation but not secondary conidiation significantly increased with the FE from susceptible cultivars versus resistant cultivars. Inoculum supplemented with FE produced higher levels of disease on ripe blueberry fruit as compared with inoculum with water only. Flowers from other ericaceous species were found to also induce secondary conidiation and appressorial formation of C. fioriniae. This research provides strong evidence that flowers can contribute substantially to the infection process of C. fioriniae, signifying the importance of the bloom period for developing effective disease management strategies.


2020 ◽  
Vol 8 (7) ◽  
pp. 1080
Author(s):  
David Castro ◽  
Marta Torres ◽  
Inmaculada Sampedro ◽  
Fernando Martínez-Checa ◽  
Borja Torres ◽  
...  

Verticillium wilt, caused by the pathogen Verticillium dahliae, is extremely devastating to olive trees (Olea europea). Currently, no successful control measure is available against it. The objective of this work was to evaluate the antifungal activity of Bacillus velezensis XT1, a well-characterized salt-tolerant biocontrol strain, against the highly virulent defoliating V. dahliae V024. In vitro, strain XT1 showed to reduce fungal mycelium from 34 to 100%, depending on if the assay was conducted with the supernatant, volatile compounds, lipopeptides or whole bacterial culture. In preventive treatments, when applied directly on young olive trees, it reduced Verticillium incidence rate and percentage of severity by 54 and ~80%, respectively. It increased polyphenol oxidase (PPO) activity by 395%, indicating an enhancement of disease resistance in plant tissues, and it decreased by 20.2% the number of fungal microsclerotia in soil. In adult infected trees, palliative inoculation of strain XT1 in the soil resulted in a reduction in Verticillium symptom severity by ~63%. Strain XT1 is biosafe, stable in soil and able to colonize olive roots endophytically. All the traits described above make B. velezensis XT1 a promising alternative to be used in agriculture for the management of Verticillium wilt.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1816-1822 ◽  
Author(s):  
Samuele Peppoloni ◽  
Brunella Posteraro ◽  
Bruna Colombari ◽  
Lidia Manca ◽  
Axel Hartke ◽  
...  

Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severe nosocomial and community-acquired infections. Although enterococcal meningitis is rare, mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of this infection remain poorly understood, even though the ability of E. faecalis to avoid or survive phagocytic attack in vivo may be very important during the infection process. We previously showed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis was implicated in oxidative stress responses and, interestingly, in the survival within mouse peritoneal macrophages using an in vivo–in vitro infection model. In the present study, we investigated the role of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. By using an in vitro infection model, murine microglial cells were challenged in parallel with the wild-type strain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosed by microglia efficiently and to a similar extent, the ΔsodA mutant was found to be significantly more susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protection assay. In addition, a significantly higher percentage of acidic ΔsodA-containing phagosomes was found and these also underwent enhanced maturation as determined by the expression of endolysosomal markers. In conclusion, these results show that the MnSOD of E. faecalis contributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity, and this could even be important for intracellular killing in neutrophils and thus for E. faecalis pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document