scholarly journals Novel Genes and Genetic Loci Associated With Root Morphological Traits, Phosphorus-Acquisition Efficiency and Phosphorus-Use Efficiency in Chickpea

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahendar Thudi ◽  
Yinglong Chen ◽  
Jiayin Pang ◽  
Danamma Kalavikatte ◽  
Prasad Bajaj ◽  
...  

Chickpea—the second most important grain legume worldwide—is cultivated mainly on marginal soils. Phosphorus (P) deficiency often restricts chickpea yields. Understanding the genetics of traits encoding P-acquisition efficiency and P-use efficiency will help develop strategies to reduce P-fertilizer application. A genome-wide association mapping approach was used to determine loci and genes associated with root architecture, root traits associated with P-acquisition efficiency and P-use efficiency, and any associated proxy traits. Using three statistical models—a generalized linear model (GLM), a mixed linear model (MLM), and a fixed and random model circulating probability unification (FarmCPU) —10, 51, and 40 marker-trait associations (MTAs), respectively were identified. A single nucleotide polymorphism (SNP) locus (Ca1_12310101) on Ca1 associated with three traits, i.e., physiological P-use efficiency, shoot dry weight, and shoot P content was identified. Genes related to shoot P concentration (NAD kinase 2, dynamin-related protein 1C), physiological P-use efficiency (fasciclin-like arabinogalactan protein), specific root length (4-coumarate–CoA ligase 1) and manganese concentration in mature leaves (ABC1 family protein) were identified. The MTAs and novel genes identified in this study can be used to improve P-use efficiency in chickpea.

2021 ◽  
Vol 22 (17) ◽  
pp. 9311
Author(s):  
Dongdong Li ◽  
Haoying Wang ◽  
Meng Wang ◽  
Guoliang Li ◽  
Zhe Chen ◽  
...  

Phosphorus (P) deficiency is an important challenge the world faces while having to increase crop yields. It is therefore necessary to select maize (Zea may L.) genotypes with high phosphorus use efficiency (PUE). Here, we extensively analyzed the biomass, grain yield, and PUE-related traits of 359 maize inbred lines grown under both low-P and normal-P conditions. A significant decrease in grain yield per plant and biomass, an increase in PUE under low-P condition, as well as significant correlations between the two treatments were observed. In a genome-wide association study, 49, 53, and 48 candidate genes were identified for eleven traits under low-P, normal-P conditions, and in low-P tolerance index (phenotype under low-P divided by phenotype under normal-P condition) datasets, respectively. Several gene ontology pathways were enriched for the genes identified under low-P condition. In addition, seven key genes related to phosphate transporter or stress response were molecularly characterized. Further analyses uncovered the favorable haplotype for several core genes, which is less prevalent in modern lines but often enriched in a specific subpopulation. Collectively, our research provides progress in the genetic dissection and molecular characterization of PUE in maize.


2013 ◽  
Vol 64 (6) ◽  
pp. 588 ◽  
Author(s):  
Ying L. Chen ◽  
Vanessa M. Dunbabin ◽  
Art J. Diggle ◽  
Kadambot H. M. Siddique ◽  
Zed Rengel

Lupinus angustifolius L. (narrow-leafed lupin) is an important grain legume crop for the stockfeed industry in Australia. This species does not form cluster roots regardless of phosphorus (P) nutrition. We hypothesise that this species may have adaptive strategies for achieving critical P uptake in low-P environments by altering shoot growth and root architecture and secreting carboxylates from roots. Three wild genotypes of L. angustifolius with contrasting root architecture were selected to investigate the influence of P starvation on root growth and rhizosphere carboxylate exudation and their relationship with P acquisition. Plants were grown in sterilised loamy soil supplied with zero, low (50 μm) or optimal (400 μm) P for 6 weeks. All genotypes showed a significant response in shoot and root development to varying P supply. At P deficit (zero and low P), root systems were smaller and had fewer branches than did roots at optimal P. The amount of total carboxylates in the rhizosphere extracts ranged from 3.4 to 17.3 μmol g–1 dry root. The total carboxylates comprised primarily citrate (61–78% in various P treatments), followed by malate and acetate. Genotype #085 (large root system with deep lateral roots) exuded the greatest amount of total carboxylates to the rhizosphere for each P treatment, followed by #016 (medium root system with good branched lateral roots) and #044 (small root system with short and sparse lateral roots). All genotypes in the low-P treatment significantly enhanced exudation of carboxylates, whereas no significant increase in carboxylate exudation was observed in the zero-P treatment. Small-rooted genotypes had higher P concentration than the medium- and large-rooted genotypes, although larger plants accumulated higher total P content. Large-rooted genotypes increased shoot P utilisation efficiency in response to P starvation. This study showed that narrow-leafed lupin genotypes differing in root architecture differed in carboxylate exudation and P uptake. Our finding suggested that for L. angustifolius there is a minimum plant P concentration below which carboxylate exudation is not enhanced despite severe P deficiency. The outcomes of this study enhance our understanding of P acquisition strategies in L. angustifolius genotypes, which can be used for the selection of P-efficient genotypes for cropping systems.


2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Harsh Kumar Dikshit ◽  
Venkata Ravi Prakash Reddy ◽  
Gyan Prakash Mishra ◽  
Muraleedhar Aski ◽  
Renu Pandey ◽  
...  

Phosphorus (P) deficiency is one of the serious problems affecting plant growth in mungbean in different parts of the world. The root, shoot and biomass related traits were investigated for identifying P-efficient genotypes in 54 mungbean genotypes under low-P (LP) and normal-P (NP) conditions. In this study, the membership function value of P use efficiency of studied traits was used as a compendious index for studying P use efficiency (PUE) in mungbean. Among the studied traits, mean values of total root volume, chlorophyll concentration, root dry weight (RDW) and root to shoot ratio increased >25% under LP condition indicating that these traits are highly responsive to P deficiency. Correlation and stepwise regression analysis revealed that RDW explained most of the variation and could be used as a clear indicator of PUE. The five highly P-efficient genotypes namely, MH 805, M 42, PUSA 9531, EC 398885 and M 209 with high MFVP values may be used for PUE improvement in mungbean.


2019 ◽  
Author(s):  
Caroline Baudson ◽  
Benjamin M. Delory ◽  
Stijn Spaepen ◽  
Patrick du Jardin ◽  
Pierre Delaplace

AbstractBackgroundMineral P fertilisers must be used wisely in order to preserve rock phosphate, a limited and non-renewable resource. The use of bio-inoculants to improve soil nutrient availability and trigger an efficient plant response to nutrient deficiency is one potential strategy in the attempt to decrease P inputs in agriculture.MethodA gnotobiotic co-cultivation system was used to study the response of Brachypodium distachyon to contrasted P supplies (soluble and poorly soluble forms of P) and inoculation with P solubilizing bacteria. Brachypodium’s responses to P conditions and inoculation with bacteria were studied in terms of developmental plasticity and P use efficiency.ResultsBrachypodium showed plasticity in its biomass allocation pattern in response to variable P conditions, specifically by prioritizing root development over shoot productivity under poorly soluble P conditions. Despite the ability of the bacteria to solubilize P, shoot productivity was depressed in plants inoculated with bacteria, although the root system development was maintained. The negative impact of bacteria on biomass production in Brachypodium might be attributed to inadequate C supply to bacteria, an increased competition for P between both organisms under P-limiting conditions, or an accumulation of toxic bacterial metabolites in our cultivation system. Both P and inoculation treatments impacted root system morphology. The modulation of Brachypodium’s developmental response to P supplies by P solubilizing bacteria did not lead to improved P use efficiency.ConclusionOur results support the hypothesis that plastic responses of Brachypodium cultivated under P-limited conditions are modulated by P solubilizing bacteria. The considered experimental context impacts plant–bacteria interactions. Choosing experimental conditions as close as possible to real ones is important in the selection of P solubilizing bacteria. Both persistent homology and allometric analyses proved to be useful tools that should be considered when studying the impact of bio-inoculants on plant development in response to varying nutritional context.


Author(s):  
N. Boukhalfa-Deraoui ◽  
L. Hanifi-Mekliche ◽  
A. Mekliche

Background: P deficiency is very common in alkaline - calcareous soil. Therefore, application of foliar-absorbed fertilizers may be an effective strategy to overcome the low bioavailability of phosphorus in soil, by improving phosphorus use efficiency and reduced nutrients loses.Methods: A field experiment was carried out in 2006-07 growing season at El-Menia (southeastern Algeria) to evaluated the effect of two foliar P (agriphos and leader-start) and three soil P (TSP P 46, Fosfactyl NP 3:22 and NPKs 8:36:13,5+15) on yield and P use efficiency of durum wheat crop Triticum durum Desf. var. Carioca and on available P and total P in soil.Result: Data showed that significant effect of soil P fertilizer on grain yield components (ears m-², grains ear-1 and the 1000 grains weight), grain P use efficiency and available P in soil. The best values were recorded by NPKs fertilizer, but no differences were observed for these parameters among foliar fertilizer sources.


2018 ◽  
Vol 34 (6) ◽  
pp. 351-363
Author(s):  
Yuki Tsujii ◽  
Kanehiro Kitayama

Abstract:Bornean rain forests on phosphorus (P)-poor soils exhibit a high P-use efficiency in the production of reproductive organs (i.e. the inverse of P concentration in reproductive-organ litter). The mechanism underpinning this high P-use efficiency is not known, but is hypothesized to result from dilution of P in a given type of reproductive organ and/or a shift of the community composition of flower/fruit types with decreasing P availability. These hypotheses were tested using eight forests with different soil P availabilities on Mount Kinabalu, Borneo. Mean P concentration per forest by genus in inflorescences was significantly positively correlated with P availability, while that in seeds or pericarps was not significantly correlated. This trend was consistent across 21 genera that we analysed, suggesting that P concentration in seeds is maintained in exchange with the dilution of P in inflorescences. The composition of fruit types in tree community was estimated based on the relative abundances of genera in each forest. The relative abundance of capsulate species, which required less P in pericarps, tended to increase in tree community with decreasing P availability. Therefore, both mechanisms were involved in P-use efficiency. This work provides an insight into the reproductive adaptation of trees to P deficiency.


2011 ◽  
Vol 62 (6) ◽  
pp. 467 ◽  
Author(s):  
Qifu Ma ◽  
Zed Rengel ◽  
Kadambot H. M. Siddique

Heterogeneity of soil nutrients, particularly phosphorus (P), is widespread in modern agriculture due to increased adoption of no-till farming, but P-use efficiency and related physiological processes in plants grown in soils with variable distribution of nutrients are not well documented. In a glasshouse column experiment, wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) were subjected to 50 mg P/kg at 7–10 cm depth (hotspot P) or 5 mg P/kg in the whole profile (uniform P), with both treatments receiving the same amount of P. Measurements were made of plant growth, gas exchange, P uptake, and root distribution. Plants with hotspot P supply had more biomass and P content than those with uniform P supply. The ratios of hotspot to uniform P supply for shoot parameters, but not for root parameters, were lower in L. albus than wheat, indicating that L. albus was better able than wheat to acquire and utilise P from low-P soil. Cluster roots in L. albus were enhanced by low shoot P concentration but suppressed by high shoot P concentration. Soil P supply decreased root thickness and the root-to-shoot ratio in wheat but had little effect on L. albus. The formation of cluster roots in low-P soil and greater proliferation and surface area of roots in the localised, P-enriched zone in L. albus than in wheat would increase plant P use in heterogeneous soils. L. albus also used proportionally less assimilated carbon than wheat for root growth in response to soil P deficiency. The comparative advantage of each strategy by wheat and L. albus for P-use efficiency under heterogeneous P supply may depend on the levels of P in the enriched v. low-P portions of the root-zone and other soil constraints such as water, nitrogen, or potassium supply.


2009 ◽  
Vol 45 (4) ◽  
pp. 417-427 ◽  
Author(s):  
S. O. GUDU ◽  
P. O. KISINYO ◽  
E. T. MAKATIANI ◽  
D. W ODEE ◽  
J. F. O. ESEGU ◽  
...  

SUMMARYNitrogen fixation by leguminous trees such as sesbania (Sesbania sesban) in acid soils is limited by aluminium (Al) toxicity and phosphorus (P) deficiency. We screened 214 East African sesbania accessions for Al toxicity tolerance, P use efficiency and sesbania–rhizobia symbiosis. Aluminium toxicity tolerance or sensitivity was measured by the relative root elongation index. Highly Al tolerant and sensitive accessions were screened for P use efficiency. Highly P use efficient and Al sensitive accessions were assessed for symbiotic effectiveness with acid tolerant rhizobia. Eighty-eight per cent of the accessions were Al toxicity tolerant. High Al levels reduced shoot P content by 88% and total dry matter (TDM) by 83%. P addition increased shoot P content and TDM. Rhizobia inoculation increased nodulation by 28–82%, shoot N content by 28–45% and TDM by 15–34% in the low rhizobia density acid soil of Bumala, Kenya. P use efficient accessions had higher nodulation, shoot N content and TDM in the ranges 32–70, 20–52 and 22–36%, respectively, compared to sensitive genotypes. The combination of sesbania accession (SSUG10) and rhizobia strain ASs48 was superior in shoot N accumulation. Inoculation of P use efficient germplasm with acid tolerant rhizobia can improve N-rich biomass accumulation suitable for N replenishment in acid soils.


2007 ◽  
Vol 34 (1) ◽  
pp. 72 ◽  
Author(s):  
Oula Ghannoum ◽  
Jann P. Conroy

This study compared the growth and photosynthetic responses of one C3 (Panicum laxum L.) and two C4 grasses (Panicum coloratum L. and Cenchrus ciliaris L.) to changes in soil phosphorus (P) nutrition. Plants were grown in potted soil amended with six different concentrations of P. One week before harvest, leaf elongation and photosynthetic rates and the contents of carbohydrate, P and inorganic phosphate (Pi) were measured. Five weeks after germination, plants were harvested to estimate biomass accumulation. At each soil P supply, leaf P contents were lower in the C3 (0.6–2.6 mmol P m–2) than in the two C4 grasses (0.8–4.1 mmol P m–2), and Pi constituted ~40–65% of total leaf P. The P deficiency reduced leaf growth, tillering and plant dry mass to a similar extent in all three grasses. In contrast, P deficiency suppressed photosynthetic rates to a greater extent in the C3 (50%) than the C4 grasses (25%). The foliar contents of non-structural carbohydrates were affected only slightly by soil P supply in all three species. Leaf mass per area decreased at low P in the two C4 grasses only, and biomass partitioning changed little with soil P supply. The percentage changes in assimilation rates and plant dry mass were linearly related in the C3 but not the C4 plants. Thus, P deficiency reduced growth in parallel with reductions of photosynthesis in the C3 grass, and independently of photosynthesis in the two C4 grasses. We propose that this may be related to a greater Pi requirement of C4 relative to C3 photosynthesis. Photosynthetic P use efficiency was greater and increased more with P deficiency in the C4 relative to the C3 species. The opposite was observed for whole-plant P-use efficiency. Hence, the greater P-use efficiency of C4 photosynthesis was not transferred to the whole-plant level, mainly as a result of the larger and constant leaf P fraction in the two C4 grasses.


Sign in / Sign up

Export Citation Format

Share Document