scholarly journals Expression of KNUCKLES in the Stem Cell Domain Is Required for Its Function in the Control of Floral Meristem Activity in Arabidopsis

2021 ◽  
Vol 12 ◽  
Author(s):  
Kamila Kwaśniewska ◽  
Caoilfhionn Breathnach ◽  
Christina Fitzsimons ◽  
Kevin Goslin ◽  
Bennett Thomson ◽  
...  

In the model plant Arabidopsis thaliana, the zinc-finger transcription factor KNUCKLES (KNU) plays an important role in the termination of floral meristem activity, a process that is crucial for preventing the overgrowth of flowers. The KNU gene is activated in floral meristems by the floral organ identity factor AGAMOUS (AG), and it has been shown that both AG and KNU act in floral meristem control by directly repressing the stem cell regulator WUSCHEL (WUS), which leads to a loss of stem cell activity. When we re-examined the expression pattern of KNU in floral meristems, we found that KNU is expressed throughout the center of floral meristems, which includes, but is considerably broader than the WUS expression domain. We therefore hypothesized that KNU may have additional functions in the control of floral meristem activity. To test this, we employed a gene perturbation approach and knocked down KNU activity at different times and in different domains of the floral meristem. In these experiments we found that early expression in the stem cell domain, which is characterized by the expression of the key meristem regulatory gene CLAVATA3 (CLV3), is crucial for the establishment of KNU expression. The results of additional genetic and molecular analyses suggest that KNU represses floral meristem activity to a large extent by acting on CLV3. Thus, KNU might need to suppress the expression of several meristem regulators to terminate floral meristem activity efficiently.

Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4481-4491 ◽  
Author(s):  
A. Sessions ◽  
J.L. Nemhauser ◽  
A. McColl ◽  
J.L. Roe ◽  
K.A. Feldmann ◽  
...  

ettin (ett) mutations have pleiotropic effects on Arabidopsis flower development, causing increases in perianth organ number, decreases in stamen number and anther formation, and apical-basal patterning defects in the gynoecium. The ETTIN gene was cloned and encodes a protein with homology to DNA binding proteins which bind to auxin response elements. ETT transcript is expressed throughout stage 1 floral meristems and subsequently resolves to a complex pattern within petal, stamen and carpel primordia. The data suggest that ETT functions to impart regional identity in floral meristems that affects perianth organ number spacing, stamen formation, and regional differentiation in stamens and the gynoecium. During stage 5, ETT expression appears in a ring at the top of the floral meristem before morphological appearance of the gynoecium, consistent with the proposal that ETT is involved in prepatterning apical and basal boundaries in the gynoecium primordium. Double mutant analyses and expression studies show that although ETT transcriptional activation occurs independently of the meristem and organ identity genes LEAFY, APETELA1, APETELA2 and AGAMOUS, the functioning of these genes is necessary for ETT activity. Double mutant analyses also demonstrate that ETT functions independently of the ‘b’ class genes APETELA3 and PISTILLATA. Lastly, double mutant analyses suggest that ETT control of floral organ number acts independently of CLAVATA loci and redundantly with PERIANTHIA.


2021 ◽  
Author(s):  
Ya Min ◽  
Evangeline S. Ballerini ◽  
Molly B. Edwards ◽  
Scott A. Hodges ◽  
Elena M. Kramer

Floral organs are produced by floral meristems (FMs), which harbor stem cells in their centers. Since each flower only has a finite number of organs, the stem cell activity of a FM will always terminate at a specific time point, a process termed floral meristem termination (FMT). Variation in the timing of FMT can give rise to floral morphological diversity, but how this process is fine-tuned at a developmental and evolutionary level is poorly understood. Flowers from the genus Aquilegia share identical floral organ arrangement except for stamen whorl numbers (SWN), making Aquilegia a well-suited system for investigation of this process: differences in SWN between species represent differences in the timing of FMT. By crossing A. canadensis and A. brevistyla, quantitative trait locus (QTL) mapping has revealed a complex genetic architecture with seven QTL. We identified potential candidate genes under each QTL and characterized novel expression patterns of select candidate genes using in situ hybridization. To our knowledge, this is the first attempt to dissect the genetic basis of how natural variation in the timing of FMT is regulated and our results provide insight into how floral morphological diversity can be generated at the meristematic level.


2021 ◽  
Author(s):  
Ya Min ◽  
Stephanie J. Conway ◽  
Elena M. Kramer

ABSTRACTIn-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FM) produce floral organs, after which they undergo floral meristem termination (FMT), and precise control of organ initiation and FMT is crucial to reproductive success of any flowering plant. Using a live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results have uncovered distinct patterns of primordium initiation between stamens and staminodes compared to carpels, and provided insight into the process of FMT, which is discernable based on cell division dynamics preceding carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both an evolutionary and developmental context.


2017 ◽  
Author(s):  
Nathanaël Prunet ◽  
Weibing Yang ◽  
Pradeep Das ◽  
Elliot M. Meyerowitz ◽  
Thomas P. Jack

SummaryThe molecular and genetic networks underlying the determination of floral organ identity are well studied, but much less is known about how the flower is partitioned into four developmentally distinct whorls. The SUPERMAN gene is required for proper specification of the boundary between stamens in whorl 3 and carpels in whorl 4, as superman mutants exhibit supernumerary stamens but usually lack carpels. However, it has remained unclear whether extra stamens in superman mutants originate from an organ identity change in whorl 4 or the overproliferation of whorl 3. Using live confocal imaging, we show that the extra stamens in superman mutants arise from cells in whorl 4, which change their fate from female to male, while floral stem cells proliferate longer, allowing for the production of additional stamens.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1261-1269 ◽  
Author(s):  
M.P. Running ◽  
E.M. Meyerowitz

An open question in developmental biology is how groups of dividing cells can generate specific numbers of segments or organs. We describe the phenotypic effects of mutations in PERIANTHIA, a gene specifically required for floral organ patterning in Arabidopsis thaliana. Most wild-type Arabidopsis flowers have 4 sepals, 4 petals, 6 stamens, and 2 carpels. Flowers of perianthia mutant plants most commonly show a pentamerous pattern of 5 sepals, 5 petals 5 stamens, and 2 carpels. This pattern is characteristic of flowers in a number of plant families, but not in the family Brassicaceae, which includes Arabidopsis. Unlike previously described mutations affecting floral organ number, perianthia does not appear to affect apical or floral meristem sizes, nor is any other aspect of vegetative or floral development severely affected. Floral organs in perianthia arise in a regular, stereotypical pattern similar to that in distantly related species with pentamerous flowers. Genetic analysis shows that PERIANTHIA acts downstream of the floral meristem identity genes and independently of the floral meristem size and floral organ identity genes in establishing floral organ initiation patterns. Thus PERIANTHIA acts in a previously unidentified process required for organ patterning in Arabidopsis flowers.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 1923-1931 ◽  
Author(s):  
Richard Waites ◽  
Andrew Hudson

In angiosperms, individual lateral organs and whole flowers may develop asymmetrically along their dorsoventral axes. Dorsoventral asymmetry of Antirrhinum leaves requires activity of the Phantastica gene and other factors acting redundantly with it. We describe the effects of a mutation in the Handlebars gene, identified as an enhancer of the phantastica mutant phenotype. Genetic analysis suggests that Handlebars functions redundantly with Phantastica to promote dorsal fate in lateral organs and to maintain activity of stem cells within shoot apical meristems. Handlebars appears dispensable in vegetative development but is needed for asymmetry of petals along the dorsoventral axis of the flower as a whole. This suggests that common mechanisms may control dorsoventral asymmetry in lateral organ primordia and in floral meristems.


2006 ◽  
Vol 84 (5) ◽  
pp. 767-776 ◽  
Author(s):  
Teresa Martin ◽  
Ming Hu ◽  
Hélène Labbé ◽  
Sylvia McHugh ◽  
Antonet Svircev ◽  
...  

MADS-box transcription factors are known to play a central role in floral organ identity and floral meristem determinacy in many gymnosperms and angiosperms. Studies of this nature are limited in fruit tree species despite the economic importance of this group. A peach ( Prunus persica (L.) Batsch) gene, PpAG1, was isolated and shown to be homologous to the Arabidopsis thaliana (L.) Heynh. MADS-box gene AGAMOUS (AG). It is a single gene in peach and codes for a type II or MIKC-type MADS-box protein. The features of the deduced protein sequence indicate that it is similar to other AG homologs from woody plant species. The spatial and developmental patterns of expression parallel those of AG and homologs from other angiosperms with similar floral structures but with some minor differences. In the floral meristem, where AG is responsible for conversion of the vegetative meristem into the floral meristem, the differentiation of the whorls that generate the carpels and stamens coincides with the tissue-specific expression of PpAG1. It continues to be expressed in the ovules, developing fruit and seeds that subsequently develop from the carpels. Constitutive overexpression of PpAG1 in Arabidopsis, using the 35S promoter, caused the homeotic conversion of sepals to carpelloid tissues and altered petal development. This is consistent with C-function genes according to the ABC model of flower development. The data support the conclusion that PpAG1 is the peach homolog of Arabidopsis AG.


2020 ◽  
Author(s):  
Nien-Chen Huang ◽  
Huan-Chi Tien ◽  
Tien-Shin Yu

AbstractCell-to-cell and inter-organ communication play pivotal roles in synchronizing and coordinating plant development. In addition to serving as templates for protein translation within cells, many mRNAs can move and exert their function non-cell-autonomously. However, because the proteins encoded by some mobile mRNAs are also mobile, whether the systemic function of mobile mRNAs is attributed to proteins transported distally or translated locally remains controversial. Here, we show that Arabidopsis AGAMOUS-LIKE 24 (AGL24) mRNA acts as a leaf-derived signal to specify meristem identity. AGL24 is expressed in both apex and leaves. Upon floral meristem (FM) transition, apex-expressed AGL24 is transcriptionally inhibited by APETALA1 (AP1) to ensure FM differentiation. The leaf-expressed AGL24 can act as a mobile signal to bypass AP1 inhibition and revert FM differentiation. Although AGL24 mRNA is expressed in leaves, AGL24 protein is rapidly degraded in leaves. In contrast, AGL24 mRNA can move long distance from leaf to apex where the translocated AGL24 mRNAs can be used as templates to translate into proteins. Thus, the movement of AGL24 mRNA can provide the developmental plasticity to fit with environmental dynamics.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2359-2369
Author(s):  
P.C. McSteen ◽  
C.A. Vincent ◽  
S. Doyle ◽  
R. Carpenter ◽  
E.S. Coen

The development of reproductive organs in Antirrhinum depends on the expression of an organ identity gene, plena, in the central domain of the floral meristem. To investigate the mechanism by which plena is regulated, we have characterised three mutants in which the pattern of plena expression is altered. In polypetala mutants, expression of plena is greatly reduced, resulting in a proliferation of petals in place of reproductive organs. In addition, polypetala mutants exhibit an altered pattern of floral organ initiation, quite unlike that seen in loss-of-function plena mutants. This suggests that polypetala normally has two roles in flower development: regulation of plena and control of organ primordia formation. In fistulata mutants, plena is ectopically expressed in the distal domain of petal primordia, resulting in the production of anther-like tissue in place of petal lobes. Flowers of fistulata mutants also show a reduced rate of petal lobe growth, even in a plena mutant background. This implies that fistulata normally has two roles in the distal domain of petal primordia: inhibition of plena expression and promotion of lobe growth. A weak allele of the floral meristem identity gene, floricaula, greatly enhances the effect of fistulata on plena expression, showing that floricaula also plays a role in repression of plena in outer whorls. Taken together, these results show that genes involved in plena regulation have additional roles in the formation of organs, perhaps reflecting underlying mechanisms for coupling homeotic gene expression to morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document