scholarly journals The Responses of Light Reaction of Photosynthesis to Dynamic Sunflecks in a Typically Shade-Tolerant Species Panax notoginseng

2021 ◽  
Vol 12 ◽  
Author(s):  
Jin-Yan Zhang ◽  
Qiang-Hao Zhang ◽  
Sheng-Pu Shuang ◽  
Zhu Cun ◽  
Hong-Min Wu ◽  
...  

Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (Fv′/Fm′) declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 μmol m–2 s–1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 μmol m–2 s–1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (Jf,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (JNC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (JNPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the JNPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (JO) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.

2020 ◽  
Author(s):  
Jin-Yan Zhang ◽  
Zhu Cun ◽  
Jun-Wen Chen

Abstract Background: Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). Results: Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm ) to Rubisco content (gm /Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi ). LN- and HN-grown individuals allocated less N to light-harvesting system (NL ) and carboxylation system (NC ), respectively. N surplus negatively affected the expression of genes in Car biosynthesis ( GGPS , DXR , PSY , IPI and DXS ). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes ( FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH ) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2 , RPI4 , CAB and PetE were repressed in the HN-grown plants. Conclusions: LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.


1998 ◽  
Vol 28 (6) ◽  
pp. 871-886 ◽  
Author(s):  
Elaine F Wright ◽  
K Dave Coates ◽  
Charles D Canham ◽  
Paula Bartemucci

We characterize variation in radial and height growth of saplings of 11 tree species across a range of light levels in boreal, sub-boreal, subalpine, and temperate forests of northwestern British Columbia. Shade-tolerant species had the greatest response to an increase in light at low-light levels but had low asymptotic growth at high light. Shade-intolerant species had weaker responses to increases at low light but had the highest growth rates at high light. The effects of climate on intraspecific variation in sapling response to light were also related to shade tolerance: across different climatic regions, the most shade-tolerant species varied in their response to low-light but not high light, while shade-intolerant species varied only in their high-light growth. Species with intermediate shade tolerance varied both their amplitude of growth at high light and the slope of the growth response at low light. Despite the interspecific trade-offs between high- and low-light growth, there was a striking degree of overlap in the light response curves for the component species in virtually all of the climatic regions. Successional dynamics in these forests appear to be more strongly governed by interspecific variation in sapling survival than growth.


2019 ◽  
Author(s):  
Jin-Yan Zhang ◽  
Zhu Cun ◽  
Jun-Wen Chen

Abstract Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm ) to Rubisco content (gm /Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi ). LN- and HN-grown individuals allocated less N to light-harvesting system (NL ) and carboxylation system (NC ), respectively. N surplus negatively affected the expression of genes in Car biosynthesis ( GGPS , DXR , PSY , IPI and DXS ) and non-net carboxylative process (CEF-PSI). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes ( FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH ) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2 , RPI4 , CAB and PetE were repressed in the HN-grown plants. LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco and the deprivation of photoprotection.


2003 ◽  
Vol 30 (6) ◽  
pp. 631 ◽  
Author(s):  
Luke Hendrickson ◽  
Marilyn C. Ball ◽  
C. Barry Osmond ◽  
Robert T. Furbank ◽  
Wah Soon Chow

The photosynthetic response of grapevine leaves (Vitis vinifera L. cv. Riesling) to low temperature was studied in the field and laboratory. Light-saturated rates of photosynthetic electron transport were lower and non-photochemical energy dissipation was higher when leaves were subject to low morning temperatures than to high afternoon temperatures under field conditions. These responses to low temperatures occurred without sustained reduction of quantum efficiency of PSII as measured by the variable to maximum chlorophyll fluorescence yield ratio, Fv/Fm, after dark adaptation. The temperature dependence of light-saturated apparent electron transport rate, gas exchange and non-photochemical quenching (NPQ) was also examined in laboratory experiments with glasshouse-grown material. NPQ reached saturation at lower light intensity with decreasing temperature. The relationship between the quantum efficiency of PSII and CO2 fixation at 25°C (2–21% O2) and 10°C (2–21% O2) indicated a decreased dependence of electron transport on both photorespiration and the Mehler reaction at the lower temperature. The calculated percentage of electron flow to the Mehler reaction declined faster than photorespiration at low temperature. Warm- and cold-treated leaf discs under saturating light showed very little photoinhibition as measured by sustained reduction in Fv/Fm, which was linearly related to the percentage of functional PSII reaction centres. However, the addition of dithiothreitol greatly enhanced the rate of photoinhibition, indicating a potentially strong dependence on xanthophyll de-epoxidation for photoprotection at low temperature.


2021 ◽  
Vol 45 (4) ◽  
pp. 404-419
Author(s):  
Hong-Min WU ◽  
Sheng-Pu SHUANG ◽  
Jin-Yan ZHANG ◽  
Zhu CUN ◽  
Zhen-Gui MENG ◽  
...  

2016 ◽  
Vol 43 (6) ◽  
pp. 479 ◽  
Author(s):  
Jun-Wen Chen ◽  
Shuang-Bian Kuang ◽  
Guang-Qiang Long ◽  
Sheng-Chao Yang ◽  
Zhen-Gui Meng ◽  
...  

Partitioning of light energy into several pathways and its relation to photosynthesis were examined in a shade-demanding species Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng grown along a light gradient. In fully light-induced leaves, the actual efficiency of PSII photochemistry (ΔF/Fmʹ), electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical quenching (qP) were lower in low-light-grown plants; this was also the case in fully dark-adapted leaves under a simulated sunfleck. In response to varied light intensity, high-light-grown plants showed greater quantum yields of light-dependent non-photochemical quenching (ΦNPQ) and PSII photochemistry (ΦPSII) and smaller quantum yields of fluorescence and constitutive thermal dissipation (Φf,d). Under the simulated sunfleck, high-light-grown plants showed greater ΦPSII and smaller Φf,d. There were positive relationships between net photosynthesis (Anet) and ΦNPQ+f,d and negative relationships between Anet and ΦPSII in fully light-induced leaves; negative correlations of Anet with ΦNPQ+f,d and positive correlations of Anet with ΦPSII were observed in fully dark-adapted leaves. In addition, more nitrogen was partitioned to light-harvesting components in low-light-grown plants, whereas leaf morphology and anatomy facilitate reducing light capture in high-light-grown plants. The pool of xanthophyll pigments and the de-epoxidation state was greater in high-light-grown plants. Antioxidant defence was elevated by increased growth irradiance. Overall, the evidences from P. notoginseng suggest that in high-light-grown shade-demanding plants irradiated by high light more electrons were consumed by non-net carboxylative processes that activate the component of NPQ, that low-light-grown plants correspondingly protect the photosynthetic apparatus against photodamage by reducing the efficiency of PSII photochemistry under high light illumination, and that during the photosynthetic induction, the ΔpH-dependent (qE) component of NPQ might dominate photoprotection, but the NPQ also depresses the enhancement of photosynthesis via competition for light energy.


2021 ◽  
Author(s):  
Guy Levin ◽  
Sharon Kulikovsky ◽  
Varda Liveanu ◽  
Benjamin Eichenbaum ◽  
Ayala Meir ◽  
...  

AbstractAlthough light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition (PI), the process of light-induced photo-damage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green micro-alga, isolated from biological soil crusts in the desert that thrive under extreme high light and is highly resistant to PI. Therefore, C. ohadii is an ideal candidate for study the molecular protection mechanisms from PI. To charac-terize these protection mechanisms in C. ohadii, we compared thylakoids of cells that were grown under low light versus extreme high light intensities. C. ohadii were found to employ all three known PI protection mechanisms: i) performance of massive reduction of the PSII antenna size; ii) accumulate protective carotenoids; and iii) possess a very fast repair cycle of photo-damaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms and shows how photoinhibition protection mechanisms evolved to marginal conditions enabling photosynthesis-dependent life in severe habitats.One Sentence HighlightAnalysis of the photosynthetic properties of a desert algae that thrives at extreme high light in-tensities reveals how protection from photoinhibition is achieved by a remarkable enhancement of three protection mechanisms.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2002 ◽  
Vol 29 (5) ◽  
pp. 621 ◽  
Author(s):  
Salvador Nogués ◽  
Leonor Alegre

In the Mediterranean, annual mean precipitation has continuously decreased over the last three years (by ca 36% in Barcelona), and the decrease has been dramatic during the summer (by ca 78 and 64% during July and August, respectively). The impact of increased drought on the photosynthetic capacity of Mediterranean vegetation is currently unknown. In this study, two native Mediterranean plants [rosemary (Rosmarinus officinalis L.) and lavender (Lavandula stoechas L.)] were grown outdoors and subjected to two water regimes (50 mm month–1 during the summer, or no supplementary water at all). Rosemary and lavender plants watered with 50 mm month–1 during the summer had higher relative leaf water content and water potential than non-watered plants. Changes in water status were accompanied by large decreases in parameters of gas exchange [i.e. the light-saturated rate of CO2 assimilation, the maximum velocity of ribulose-1,5-bisphosphate (RuBP) carboxylation by Rubisco and the capacity for RuBP] and of modulated chlorophyll fluorescence (i.e. the relative quantum efficiency of PSII photochemistry and the efficiency of energy capture by open PSII reaction centres) during the summer, but no differences were found in any photosynthetic parameters for leaves subjected to the two water regimes. The drought-induced decreases in the relative quantum efficiency of PSII photochemistry in rosemary and lavender plants were attributable to ‘downregulation’ of electron transport. Photodamage to PSII in the field appeared to be a later effect of drought in these plants. Photorespiration was not a major mechanism protecting the photosynthetic apparatus of these plants from photodamage in the field. After the autumn rainfall, photosynthetic capacity fully recovered. We conclude that rosemary and lavender are well adapted to drought, and that an increase in water deficit is unlikely to have a significant impact on the photosynthetic capacity of leaves.


Sign in / Sign up

Export Citation Format

Share Document