scholarly journals Peptide Signaling Pathways Regulate Plant Vascular Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Bingjian Yuan ◽  
Huanzhong Wang

Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.

Author(s):  
Byeong Wook Jeon ◽  
Min-Jung Kim ◽  
Shashank K Pandey ◽  
Eunkyoo Oh ◽  
Pil Joon Seo ◽  
...  

Abstract Roots provide the plant with water and nutrients and anchor plants in a substrate. Root development is controlled by plant hormones and various sets of transcription factors. Recently, various small peptides and their cognate receptors have been identified to control root development. Small peptides bind to membrane-localized receptor-like kinases, inducing their dimerization with coreceptor proteins for signaling activation and giving rise to cellular signaling outputs. Small peptides function as local and long-distance signaling molecules involved in cell-to-cell communication networks, coordinating root development. In this review, we survey recent advances in the peptide ligand-mediated signaling pathways involved in the control of root development in Arabidopsis thaliana. We describe the interconnection between peptide signaling and conventional phytohormone signaling. Additionally, we discuss diversities of identified peptide-receptor interactions during plant root development.


2021 ◽  
Author(s):  
Justin V. Joseph ◽  
Capucine R. Magaut ◽  
Simon Storevik ◽  
Luiz H. Geraldo ◽  
Thomas Mathivet ◽  
...  

AbstractMicrotubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. To identify potential signaling pathways involved in MT formation we performed a bioinformatics analysis of TCGA data showing that the TGF-β pathway is highly activated in GBMs compared to oligodendroglial tumors. In particular we observed that signaling pathways involved in extracellular matrix organization are differentially expressed between these tumor entities. Using patient-derived GBM stem cell lines, we demonstrated that TGF-β1 stimulation promotes enhanced MT formation and communication via Calcium signaling. Inhibition of the TGF-β pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-β, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-β stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. In conclusion, TGF-β and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT driven invasion/ resistance network.


2019 ◽  
Vol 70 (1) ◽  
pp. 153-186 ◽  
Author(s):  
Vilde Olsson ◽  
Lisa Joos ◽  
Shanshuo Zhu ◽  
Kris Gevaert ◽  
Melinka A. Butenko ◽  
...  

During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.


2016 ◽  
Vol 148 (3) ◽  
pp. 253-271 ◽  
Author(s):  
David Fleck ◽  
Nadine Mundt ◽  
Felicitas Bruentgens ◽  
Petra Geilenkirchen ◽  
Patricia A. Machado ◽  
...  

Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP—a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts—activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca2+-activated large-conductance K+ channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis.


2007 ◽  
Vol 10 (5) ◽  
pp. 477-482 ◽  
Author(s):  
Hiroo Fukuda ◽  
Yuki Hirakawa ◽  
Shinichiro Sawa

2020 ◽  
Author(s):  
Justin R. Kaspar ◽  
Kyulim Lee ◽  
Brook Richard ◽  
Alejandro R. Walker ◽  
Robert A. Burne

Abstract The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell–cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.


2016 ◽  
Vol 113 (35) ◽  
pp. 9940-9945 ◽  
Author(s):  
Noemie Ammeux ◽  
Benjamin E. Housden ◽  
Andrew Georgiadis ◽  
Yanhui Hu ◽  
Norbert Perrimon

During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell–cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly.


2000 ◽  
Vol 191 (7) ◽  
pp. 1197-1208 ◽  
Author(s):  
Nan Chiang ◽  
Iolanda M. Fierro ◽  
Karsten Gronert ◽  
Charles N. Serhan

Lipoxin (LX) A4 and aspirin-triggered LX (ATL) are endogenous lipids that regulate leukocyte trafficking via specific LXA4 receptors (ALXRs) and mediate antiinflammation and resolution. ATL analogues dramatically inhibited human neutrophil (polymorphonuclear leukocyte [PMN]) responses evoked by a potent necrotactic peptide derived from mitochondria as well as a rogue synthetic chemotactic peptide. These bioactive lipid analogues and small peptides each selectively competed for specific 3H-LXA4 binding with recombinant human ALXR, and its N-glycosylation proved essential for peptide but not LXA4 recognition. Chimeric receptors constructed from receptors with opposing functions, namely ALXR and leukotriene B4 receptors (BLTs), revealed that the seventh transmembrane segment and adjacent regions of ALXR are essential for LXA4 recognition, and additional regions of ALXR are required for high affinity binding of the peptide ligands. Together, these findings are the first to indicate that a single seven-transmembrane receptor can switch recognition as well as function with certain chemotactic peptides to inhibitory with ATL and LX (lipid ligands). Moreover, they suggest that ALXR activation by LX or ATL can protect the host from potentially deleterious PMN responses associated with innate immunity as well as direct effector responses in tissue injury by recognition of peptide fragments.


Sign in / Sign up

Export Citation Format

Share Document