scholarly journals Cannabis Inflorescence Yield and Cannabinoid Concentration Are Not Increased With Exposure to Short-Wavelength Ultraviolet-B Radiation

2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Rodriguez-Morrison ◽  
David Llewellyn ◽  
Youbin Zheng

Before ultraviolet (UV) radiation can be used as a horticultural management tool in commercial Cannabis sativa (cannabis) production, the effects of UV on cannabis should be vetted scientifically. In this study we investigated the effects of UV exposure level on photosynthesis, growth, inflorescence yield, and secondary metabolite composition of two indoor-grown cannabis cultivars: ‘Low Tide’ (LT) and ‘Breaking Wave’ (BW). After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈225 μmol⋅m–2⋅s–1 in an 18-h light/6-h dark photoperiod, plants were grown for 9 weeks in a 12-h light/12-h dark “flowering” photoperiod under a canopy-level PPFD of ≈400 μmol⋅m–2⋅s–1. Supplemental UV radiation was provided daily for 3.5 h at UV photon flux densities ranging from 0.01 to 0.8 μmol⋅m–2⋅s–1 provided by light-emitting diodes (LEDs) with a peak wavelength of 287 nm (i.e., biologically-effective UV doses of 0.16 to 13 kJ⋅m–2⋅d–1). The severity of UV-induced morphology (e.g., whole-plant size and leaf size reductions, leaf malformations, and stigma browning) and physiology (e.g., reduced leaf photosynthetic rate and reduced Fv/Fm) symptoms intensified as UV exposure level increased. While the proportion of the total dry inflorescence yield that was derived from apical tissues decreased in both cultivars with increasing UV exposure level, total dry inflorescence yield only decreased in LT. The total equivalent Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) concentrations also decreased in LT inflorescences with increasing UV exposure level. While the total terpene content in inflorescences decreased with increasing UV exposure level in both cultivars, the relative concentrations of individual terpenes varied by cultivar. The present study suggests that using UV radiation as a production tool did not lead to any commercially relevant benefits to cannabis yield or inflorescence secondary metabolite composition.

Author(s):  
Victoria Rodriguez-Morrison ◽  
David Llewellyn ◽  
Youbin Zheng

It is commonly believed that exposing Cannabis sativa (cannabis) plants to ultraviolet (UV) radiation can enhance Δ9-tetrahydrocannabinol (Δ9-THC) concentrations in female inflorescences and associated foliar tissues. However, a lack of published scientific studies has left knowledge-gaps in the effects of UV on cannabis that must be elucidated before UV can be utilized as a horticultural management tool in commercial cannabis production. In this study we investigated the effects of UV exposure level on photosynthesis, growth, inflorescence yield, and secondary metabolite composition of two indoor-grown cannabis cultivars: ‘Low Tide’ (LT) and ‘Breaking Wave’ (BW). After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈225 μmol·m–2·s–1 in an 18-h light/6-h dark photoperiod, plants were grown for 9 weeks in a 12-h light/12-h dark “flowering” photoperiod under a canopy-level PPFD of ≈400 µmol·m–2·s–1 and 3.5 h·d–1 of supplemental UV radiation with UV photon flux densities (UV-PFD) ranging from 0.01 to 0.8 μmol·m–2·s–1 provided by light-emitting diodes (LEDs) with a peak wavelength of 287 nm (i.e., biologically-effective UV doses of 0.16 to 13 kJ·m–2·d–1). The severity of UV-induced morphology (e.g., whole-plant size and leaf size reductions, leaf malformations, and stigma browning) and physiology (e.g., reduced leaf photosynthetic rate and reduced Fv/Fm) symptoms worsened as UV exposure level increased. While the proportion of dry inflorescence yield that was derived from apical tissues decreased in both cultivars with increasing UV exposure level, total dry inflorescence yield only decreased in LT. The equivalent Δ9-THC and cannabidiol (CBD) concentrations also decreased in LT inflorescences with increasing UV exposure level. While the total terpene content in inflorescences decreased with increasing UV exposure level in both cultivars, the relative concentrations of individual terpenes varied by cultivar. The potential for using UV to enhance cannabis quality must still be confirmed before it can be used as a production tool for modern, indoor-grown cannabis cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Rodriguez-Morrison ◽  
David Llewellyn ◽  
Youbin Zheng

Since the recent legalization of medical and recreational use of cannabis (Cannabis sativa) in many regions worldwide, there has been high demand for research to improve yield and quality. With the paucity of scientific literature on the topic, this study investigated the relationships between light intensity (LI) and photosynthesis, inflorescence yield, and inflorescence quality of cannabis grown in an indoor environment. After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈425 μmol·m−2·s−1 and an 18-h light/6-h dark photoperiod, plants were grown for 12 weeks in a 12-h light/12-h dark “flowering” photoperiod under canopy-level PPFDs ranging from 120 to 1,800 μmol·m−2·s−1 provided by light emitting diodes. Leaf light response curves varied both with localized (i.e., leaf-level) PPFD and temporally, throughout the flowering cycle. Therefore, it was concluded that the leaf light response is not a reliable predictor of whole-plant responses to LI, particularly crop yield. This may be especially evident given that dry inflorescence yield increased linearly with increasing canopy-level PPFD up to 1,800 μmol·m−2·s−1, while leaf-level photosynthesis saturated well-below 1,800 μmol·m−2·s−1. The density of the apical inflorescence and harvest index also increased linearly with increasing LI, resulting in higher-quality marketable tissues and less superfluous tissue to dispose of. There were no LI treatment effects on cannabinoid potency, while there were minor LI treatment effects on terpene potency. Commercial cannabis growers can use these light response models to determine the optimum LI for their production environment to achieve the best economic return; balancing input costs with the commercial value of their cannabis products.


Author(s):  
Devdutt Kamath ◽  
Yun Kong ◽  
Chevonne Dayboll ◽  
Theo Blom ◽  
Youbin Zheng

To optimize light-emitting diode (LED) spectral recipes for gerbera (Gerbera jamesonii) seedling propagation, seed germination and seedling morphology, biomass, flowering, and storage quality were observed in four cultivars, ‘Midi Dark Purple’, ‘Majorette Red Dark Eye’, ‘Maxi Pink’, and ‘Maxi White’, under six spectrum treatments: (1) FL, cool white fluorescent light; (2) RB, a photon flux ratio of 85% red and 15% blue (RB-LED); (3) RB + UVB, RB-LED combined with 0.5 µmol m-2 s-1 of ultraviolet-B; (4) RB + UVA, RB-LED combined with 9.6 µmol m-2 s-1 of ultraviolet-A; (5) RB + G, a photon flux ratio of 60% red, 15% blue, and 25% green; (6) RB + FR, RB-LED combined with 17.3 µmol m-2 s-1 of far-red. For all treatments, the photosynthetic photon flux density was 165 µmol m-2 s-1 under a 16-h photoperiod. Seedling growth and morphology were similar under FL and RB for all cultivars, except for a wider canopy of ‘Majorette Red Dark Eye’ under RB. Each of the tri-chromatic light treatments (i.e., RB + UVB, RB + UVA, RB + G or RB + FR) showed similar effects as RB, except for thicker ‘Maxi Pink’ stems under RB + FR. Furthermore, the quality index, an integrated evaluation of seedling quality, was similar under all the treatments for each cultivar. Given similar seedling quality and the advantages of LEDs, RB-LED can potentially replace FL for controlled-environment gerbera seedling production, but the tri-chromatic lights tested in this study appear to be unnecessary.


Author(s):  
Victoria Rodriguez Morrison ◽  
David Llewellyn ◽  
Youbin Zheng

Since the recent legalization of medical and recreational use of cannabis (Cannabis sativa L.) in many regions worldwide, there has been high demand for research to improve yield and quality. With the paucity of scientific literature on the topic, this study investigated the relationships between light intensity (LI) and photosynthesis, inflorescence yield, and inflorescence quality of cannabis grown in an indoor environment. After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈ 425 μmol·m-2·s-1 and an 18-h light/6-h dark photoperiod, plants were grown for 12 weeks in a 12-h light/12-h dark ‘flowering’ photoperiod under canopy-level PPFDs ranging from 120 to 1800 μmol·m-2·s-1 provided by light emitting diodes. Leaf light response curves varied both with localized (i.e., leaf-level) PPFD and temporally, throughout the flowering cycle. Therefore, it was concluded that the leaf light response is not a reliable predictor of whole- plant responses to LI, particularly crop yield. This may be especially evident given that dry inflorescence yield increased linearly with increasing canopy-level PPFD up to 1800 μmol·m-2·s-1, while leaf-level photosynthesis saturated well below 1800 μmol·m-2·s-1. The density of the apical inflorescence and harvest index also increased linearly with increasing LI, resulting in higher-quality marketable tissues and less superfluous tissue to dispose of. There were no LI treatment effects on cannabinoid potency, while there were minor LI treatment effects on terpene potency. Commercial cannabis growers can use these light response models to determine the optimum LI for their production environment to achieve the best economic return; balancing input costs with the commercial value of their cannabis products.


1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P < .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P < .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Sungeun Lim ◽  
Jongyun Kim

Different light qualities affect plant growth and physiological responses, including stomatal openings. However, most researchers have focused on stomatal responses to red and blue light only, and the direct measurement of evapotranspiration has not been examined. Therefore, we quantified the evapotranspiration of sweet basil under various red (R), green (G), and blue (B) combinations using light-emitting diodes (LEDs) and investigated its stomatal responses. Seedlings were subjected to five different spectral treatments for two weeks at a photosynthetic photon flux density of 200 µmol m−2 s−1. The ratios of the RGB light intensities were as follows: R 100% (R100), R:G = 75:25 (R75G25), R:B = 75:25 (R75B25), R:G:B = 60:20:20 (R60G20B20), and R:G:B = 31:42:27 (R31G42B27). During the experiment, the evapotranspiration of the plants was measured using load cells. Although there were no significant differences in growth parameters among the treatments, the photosynthetic rate and stomatal conductance were higher in plants grown under blue LEDs (R75B25, R60G20B20, and R31G42B27) than in the R100 treatment. The amount of water used was different among the treatments (663.5, 726.5, 728.7, 778.0, and 782.1 mL for the R100, R75G25, R60G20B20, R75B25, and R31G42B27 treatments, respectively). The stomatal density was correlated with the blue light intensity (p = 0.0024) and with the combined intensity of green and blue light (p = 0.0029); therefore, green light was considered to promote the stomatal development of plants together with blue light. Overall, different light qualities affected the water use of plants by regulating stomatal conductance, including changes in stomatal density.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 344
Author(s):  
Md Momtazur Rahman ◽  
Mikhail Vasiliev ◽  
Kamal Alameh

Manipulation of the LED illumination spectrum can enhance plant growth rate and development in grow tents. We report on the identification of the illumination spectrum required to significantly enhance the growth rate of sweet basil (Ocimum basilicum L.) plants in grow tent environments by controlling the LED wavebands illuminating the plants. Since the optimal illumination spectrum depends on the plant type, this work focuses on identifying the illumination spectrum that achieves significant basil biomass improvement compared to improvements reported in prior studies. To be able to optimize the illumination spectrum, several steps must be achieved, namely, understanding plant biology, conducting several trial-and-error experiments, iteratively refining experimental conditions, and undertaking accurate statistical analyses. In this study, basil plants are grown in three grow tents with three LED illumination treatments, namely, only white LED illumination (denoted W*), the combination of red (R) and blue (B) LED illumination (denoted BR*) (relative red (R) and blue (B) intensities are 84% and 16%, respectively) and a combination of red (R), blue (B) and far-red (F) LED illumination (denoted BRF*) (relative red (R), blue (B) and far-red (F) intensities are 79%, 11%, and 10%, respectively). The photosynthetic photon flux density (PPFD) was set at 155 µmol m−2 s−1 for all illumination treatments, and the photoperiod was 20 h per day. Experimental results show that a combination of blue (B), red (R), and far-red (F) LED illumination leads to a one-fold increase in the yield of a sweet basil plant in comparison with only white LED illumination (W*). On the other hand, the use of blue (B) and red (R) LED illumination results in a half-fold increase in plant yield. Understanding the effects of LED illumination spectrum on the growth of plant sweet basil plants through basic horticulture research enables farmers to significantly improve their production yield, thus food security and profitability.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 125 ◽  
Author(s):  
Brian Diffey

In the early 1970s, environmental conservationists were becoming concerned that a reduction in the thickness of the atmospheric ozone layer would lead to increased levels of ultraviolet (UV) radiation at ground level, resulting in higher population exposure to UV and subsequent harm, especially a rise in skin cancer. At the time, no measurements had been reported on the normal levels of solar UV radiation which populations received in their usual environment, so this lack of data, coupled with increasing concerns about the impact to human health, led to the development of simple devices that monitored personal UV exposure. The first and most widely used UV dosimeter was the polymer film, polysulphone, and this review describes its properties and some of the pioneering studies using the dosimeter that led to a quantitative understanding of human exposure to sunlight in a variety of behavioral, occupational, and geographical settings.


Sign in / Sign up

Export Citation Format

Share Document